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Free-Order Secretary for Two-Sided Independence Systems
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Abstract

The Matroid Secretary Problem is a central question in online optimization, modeling
sequential decision-making under combinatorial constraints. Despite significant progress, the
Matroid Secretary Conjecture — which asks whether every matroid admits a constant-competitive
algorithm — remains open. We introduce a bipartite graph framework that unifies and extends
several known formulations, including the bipartite matching, matroid intersection, and random-
order matroid secretary problems. In this model, elements form a bipartite graph between agents
and items, and the objective is to select a matching that satisfies feasibility constraints on both
sides, given by two independence systems.

We study the free-order setting, where the algorithm may adaptively choose the next element
to reveal. For k-matroid intersection, we leverage a core lemma by (Feldman, Svensson and
Zenklusen, 2022) to design an Q(1/k?)-competitive algorithm, extending known results for single
matroids. Building on this, we identify the structural property underlying our approach and
introduce k-growth systems — a new class of independence systems that generalize k-matchoids
and may be of independent combinatorial interest. We establish a generalized core lemma for
k-growth systems, showing that a suitably defined set of critical elements retains a Q(1/k?)
fraction of the optimal weight. Using this lemma, we extend our (1/k?)-competitive algorithm
to k-growth systems for the edge-arrival model.

We then study the agent-arrival model, which presents unique challenges to our framework.
We extend the core lemma to this model and then apply it to obtain an Q(3/k?)-competitive
algorithm for k-growth systems, where 8 denotes the competitiveness of a special type of order-
oblivious algorithm for the item-side constraint. Finally, we relax the matching assumption
and extend our results to the case of multiple item selection, where agents have individual
independence systems coupled by a global item-side constraint. We obtain constant-competitive
algorithms for fundamental cases such as partition matroids and k-matching constraints.

We also study the structural role of k-growth systems within the hierarchy of k-systems. We
analyze their closure under key operations, such as parallel extension, restriction and contraction,
and derive a new characterization of k-extendible systems in terms of contractions of k-systems.
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1 Introduction

The secretary problem is one of the classical examples in optimal stopping theory. In the original
setup, one must select the best among n candidates arriving in a uniformly random order. No
information about the candidates is known in advance. Still, the decision-maker can rank the
candidates observed so far and make an immediate and irrevocable decision to accept or reject
the current one. The well-known strategy of observing the first 1/e fraction of candidates without
accepting any, and then selecting the first one who is better than all previously seen candidates,
yields an optimal 1/e probability of choosing the best one [27,35,53].

Recent years have seen a renewed surge of interest in the secretary problem and its extensions,
mainly driven by their deep connections to problems in online mechanism design, where agents
arrive sequentially and seek to acquire items or services. Beyond this setting, the secretary problem
is also closely related to online matching, which encompasses numerous real-world applications,
including ride-sharing platforms, online labor markets, advertising auctions, and cloud resource
allocation. In most applications, the original setup is generalized to a combinatorial framework,
where each arriving element e reveals a nonnegative weight w(e), and the objective is to maximize
the expected total weight of the selected elements, subject to the chosen set being independent with
respect to a given feasibility constraint.

Typical constraints that appear frequently, both in applications and in the literature, include
uniform matroids! (also known as cardinality constraints) and partition matroids [44], matching
constraints [29,42,48,57], and knapsack constraints [2,7,43,46,60], among others. Perhaps due to
their rich combinatorial structure and the strong performance guarantees they provide for greedy
algorithms, matroid constraints have received particular attention in the literature on the secretary
problem. Although the Matroid Secretary Conjecture [8] — which asks whether there exists a
constant-competitive algorithm for every matroid — remains unsolved (the best known competitive
ratio is Q(1/loglogr) where r is the rank of the underlying matroid [32,51]), several important
subclasses of matroids admit constant-factor competitive ratios, see, e.g., [9,42,48,69,70].

In many important practical settings, however, the feasibility constraint cannot be captured by
a single matroid. Instead, the chosen set must be independent with respect to multiple matroids
defined over the same ground set — in other words, a matroid intersection constraint. In this
model, Feldman, Svensson, and Zenklusen [34] showed that, if each individual matroid admits an
order-oblivious® constant-competitive algorithm, then one can combine these to obtain a constant-
competitive algorithm for the intersection, provided the number of matroids is constant. Moving
beyond the classical random-order formulation — where the general matroid secretary conjecture
remains unresolved — one interesting variant is the free-order model. In this setting, the algorithm is
allowed to adaptively choose the next element to reveal its weight at each step. For this model, Jaillet,
Soto, and Zenklusen [37,38] devised an algorithm that selects every element in the optimal-weight
basis of a matroid with probability 1/4.

Motivated by both theoretical considerations and real-world applications, we introduce a new
bipartite graph model for the free-order setting. In this model, we are given a bipartite graph
consisting of agents A and items B, and the objective is to select a matching that satisfies two
feasibility constraints: the set of matched agents must belong to a given family F,4, and the

1For a formal description of matroids see Definition 2.

2An order-oblivious secretary algorithm proceeds in two phases: a sampling phase that draws a random subset of
elements, observes their weights, and selects none; and a selection phase that processes all remaining elements, with
an arrival order that may be adversarial and even adaptive to the observed sample.



set of matched items must belong to a given family Fp. This formulation generalizes bipartite
matching secretary, which corresponds to the case where both F4 and Fp are free matroids®, but
is considerably more expressive. By varying F4 and Fp, the model is able to capture a broad
range of constraint families, including matroid and matroid intersection constraints, and even the
random-order matroid secretary problem within a free-order framework. Moreover, approaching
free-order selection through this two-sided matching perspective reveals a close relationship with the
classical online bipartite matching setting since, for instance, our model can naturally accommodate
agent-arrival settings.

Running example. To motivate our bipartite graph model, consider the following example. Agents
represent facilities providing different services, such as water, electricity, or internet, while items
correspond to clients. The weight of an edge {a, b} represents the utility obtained if facility a services
client b. When both F4 and Fp are free, the model reduces to a standard bipartite matching
problem; later we show how our framework allows us to handle more complex variants of this setting.

1.1 Overview of our Contributions and Techniques

In this paper, we leverage our new bipartite graph model to investigate the free-order secretary
problem under both the edge-arrival and agent-arrival settings. Our results consist of one conceptual
and three algorithmic contributions.

k-matroid intersection. We begin with k-matroid intersection. The algorithm of Jaillet, Soto,
and Zenklusen [37] provides a natural starting point: sample half of the elements, order the optimal
solution within the sample by decreasing weight, and then process the remaining elements in an
order according to the span of the prefixes of this sampled optimum. Unfortunately, this approach
cannot be generalized to matroid intersection directly due to the following two obstacles: first,
the spans of the individual matroids may require completely different orders and second, even
with a favorable order, it is a priori unclear why the intersection of the individual optimal sets
retains enough weight compared to the global optimum. The latter problem can be resolved using
a lemma by Feldman, Svensson and Zenklusen [34]: by sampling a large fraction of the elements,
they show that the so-called greedy-relevant elements of the second phase retain a decent fraction
of the optimum weight — we refer to this as the core lemma for matroid intersection (Lemma 1).
Equipped with this structural insight, we design an algorithm that extends the approach of [37], by
using the union of the individual spans of the matroids. Our algorithm selects every element in the
intersection of the optimal sets of the greedy-relevant elements with probability 1/4 (Theorem 3).
More importantly, this algorithm serves as a versatile black-box that applies beyond k-matroid
intersection, whenever the underlying constraint family admits an appropriate analogue of the core
lemma.

Running example. Suppose now that each facility requires certain raw materials or resources
supplied by a central authority in order to operate. For each resource, the subset of facilities that
can be served simultaneously forms a gammoid.* Hence, the global constraint on the agents can be
viewed as a combination of gammoids. Notably, although no constant-factor guarantees are known
for the secretary problem with gammoid constraints in the random-order setting, our bipartite graph
framework yields constant-factor guarantees even when multiple resource constraints are present.

3In a free matroid, all subsets of the ground set are independent.
4A gammoid is a special type of matroid in which a set S of vertices in a given graph is independent if there exist
vertex-disjoint paths from S to a designated sink.



k-growth systems. We then generalize this result in two different directions. First, we revisit the
core lemma by Feldman, Svensson and Zenklusen. We identify the key structural characteristic that
underpins the lemma and, motivated by this property, we introduce a new family of independence
systems which we call k-growth systems. This new family fits nicely in the existing hierarchy
of k-systems: it contains k-matchoids and, in turn, is contained within the class of k-extendible
systems. Intuitively, k-growth systems require a stronger k-extendability property, not just for
independent sets but for arbitrary sets. Beyond their theoretical appeal, k-growth systems capture
several additional constraint families that appear in practice, including bounded-ratio knapsack
constraints and stable sets of intersection graphs, thereby providing a unifying abstraction for a
wide range of combinatorial settings.

To generalize the core lemma to k-growth systems, we first need to generalize the notion of span
from matroids to k-growth systems. We introduce a new “span-like” operator, the primitive hull,
which, for any set X, consists of X together with all elements e that form a circuit with X. We
then generalize our core lemma to k-growth systems: we identify a set of critical elements, those
elements e that do not lie in the primitive hull of the greedy-relevant elements of higher weight. We
prove that, for every k-growth system, the set of critical elements preserves a {2 (1 / k2) fraction of
the weight of the optimal basis (Lemma 5, Theorem 4). Substituting our new core lemma into the
black-box algorithm from Theorem 3 immediately yields a 2 (1 / kQ)—competitive algorithm for the
free-order secretary problem over any k-growth system (Theorem 5). In fact, we establish a stronger
result; we introduce the notion of combination of systems, which generalizes the classical k-matchoid
construction, allowing the individual components of the overall system to be arbitrary constraint
families rather than only matroids. We prove that any combination of growth systems remains a
k-growth system for an appropriate k, and show that both our generalized core lemma and the
resulting algorithm extend seamlessly to combinations of growth systems, further broadening the
applicability of our framework.

Running example. In addition to resource constraints, each facility may also incur an operational
cost, while the government operates under a fixed budget for servicing clients. This naturally
induces a knapsack constraint on the set of facilities. The class of growth systems is particularly
appealing here, as it accommodates the combined feasibility constraint of (bounded-ratio) knapsack
and matroid constraints.

Agent-arrival setting. The strength of the bipartite graph model becomes evident when we turn
to the agent-arrival setting. Unfortunately, the results established for edge arrivals do not translate
directly, as the agent-arrival setting introduces three main challenges. The first difficulty arises
from the loss of partial observability. In the edge-arrival model, sampling a fraction of edges reveals
information about some edges incident to each agent. Under agent arrivals, “calling” an agent
reveals all of its incident edges simultaneously, and the agent cannot be matched later on. To address
this, we switch from reasoning about all greedy-relevant edges to a single top-relevant edge per agent.
This is the heaviest greedy relevant edge incident to that agent. Since the matching constraint
allows at most one edge per agent, we can canonically associate each agent with its top-relevant
edge. This perspective lets us extend the core lemma for k-growth systems to the agent-arrival
setting, showing that the set of top-relevant edges still retains an 2 (1 / k2) fraction of the optimal
basis weight (Lemma 6).

The second obstacle arises when attempting to use our general algorithm from Theorem 3 in a
black-box manner. The algorithm requires querying agents in an order determined by the primitive



hull on the agent side, ensuring that agents whose greedy-relevant edges are critical with respect
to F4 are considered with constant probability. This order, however, provides no guarantee on
the item side — in fact, the selected edges may form a dependent set in Fp. To address this, we
restrict Fp to systems that admit a special core-selecting order-oblivious algorithm, which preserves
its competitive guarantee even when, after a random sampling phase, the remaining elements are
presented in an arbitrary order.

This, however, reveals the third, and most subtle, obstacle in our approach: When we sample
agents, we simultaneously observe all edges incident to those agents. From the perspective of the
item side, this does not induce a uniformly random sample of items or even of item-adjacent edges,
since edges corresponding to the same agent are inherently correlated. Notice, however, that after
our first sample, each agent contributes at most one greedy-relevant edge — their top greedy-relevant
edge, if one exists. Therefore, to overcome this final obstacle, after the first sample, we restrict
our ground set to the (unknown) set of greedy-relevant edges. We can then perform a second,
independent sampling phase, ensuring that the sampled greedy-relevant edges form a uniform
random subset of the new ground set; for more details on this, see Section 5. Finally, applying the
algorithm from Theorem 3 as a black box (which introduces a third and final sampling phase) yields
an (B / k‘2)-competitive algorithm for the agent-arrival model, where 3 is the competitive ratio
of the order-oblivious algorithm for Fp (Theorem 7). This result combines the structural insights
of the edge-arrival model with the algorithmic challenges of agent arrivals, and is thus the main
algorithmic result of the paper.

Running example. Suppose that the items actually represent contracts between agencies and
clients, with each facility responsible for servicing one contract. The selected contracts thus have
to form a matching between agencies and clients, corresponding to the item-side constraint Fp.
Because this constraint admits a core-selecting, order-oblivious algorithm, our bipartite graph
framework yields constant-factor guarantees for free-order agent arrivals even in this setting.

Beyond matching constraints. We next consider settings in which each agent may select multiple
items. Extending the core lemma to this setting remains challenging — even for the intersection of
two matroids — so we take a different route and focus on the case of unrelated agents. Here, each
agent possesses their own, separate independence system governing the feasible subsets of its incident
edges, and feasibility across agents is coupled only through a global item-side constraint. In this
setting, agents arrive sequentially, reveal the weights of all adjacent edges, and the algorithm must
irrevocably select a feasible subset for each agent. Interestingly, this model captures a rich class of
problems in online selection, including the secretary problem with groups of Korula and Pal [48],
as well as variants where items represent edges in low-degree graphs or hypergraphs and feasible
sets correspond to matchings [42,57]. We design a constant-competitive algorithm (Theorem 8)
for the agent-arrival setting when the item-side constraint is sufficiently simple, for example, a
partition matroid or a k-matching constraint, demonstrating that our bipartite free-order framework
extends naturally to heterogeneous and structurally diverse environments. It is worth noting that
this approach leads to an Q(1/k?)-competitive algorithm for combinations of systems admitting a
so-called k-directed certifiers [57], which includes combinations of several classes of matroids.

Running example. Finally, when the constraints governing different facilities are independent
of one another, we can allow each facility to serve multiple contracts while the contract side still
satisfies a matching constraint. Our framework continues to provide constant-factor guarantees in
this more general setting.
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(a) Hlustration of the algorithm of Jaillet, Soto, and Zenklusen for a single matroid (Theorem 2), with a single sampling phase in
[0,1/2) and a selection phase in [1/2,1].
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(b) Ilustration of our algorithm for combinations of k-growth systems in the edge-arrival setting (Theorem 5), with a first
sampling phase in [0, p) to define the greedy-relevant elements in subsequent phases, a second sampling phase in [p, (1 + p)/2)
used by our black-box algorithm (Theorem 2) to decide the order in which to “call” the greedy-relevant elements, and a selection

phase in [(1 + p)/2,1]. Here, p = /1 — 1/(k + 1) for arbitrary k-growth systems and p = 1 — 1/(2k) for k-matchoids.
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(c) Tllustration of our algorithm for combinations of k-growth systems in the agent-arrival setting (Theorem 7), with a first
sampling phase in [0, p) to define the greedy-relevant elements in subsequent phases, a second sampling phase in [p, ¢) required
by the corresponding order-oblivious algorithm for Fpg, a third sampling phase in [g, (1 + ¢)/2) used by our black-box algorithm
(Theorem 2) to decide the order in which to “call” the greedy-relevant agents, and a selection phase in [(1 + ¢)/2,1]. Here,

p = +/1—1/(k+1) for arbitrary k-growth systems and p = 1 — 1/(2k) for k-matchoids, and ¢ depends on the sampling
probability of the order-oblivious algorithm for Fp.

Figure 1: A visual explanation of the sampling and selection phases of each of our algorithms.

The k-systems hierarchy. Finally, we examine the position of k-growth systems within the broader
k-systems hierarchy and study their relationship to other well-known classes. As discussed earlier,
we show that every k-matchoid is a k-growth system and present an example of a k-growth system
that is not k-circuit bounded. We also show that the class of k-growth systems is, in turn, contained
within the k-extendible systems. We further conjecture that these two classes actually coincide,
which, if true, would yield a new structural characterization of k-extendible systems and potentially
enable new algorithmic techniques for this important class across a range of online and combinatorial
optimization settings. We illustrate the expressiveness of k-growth systems through several examples,
including bounded-ratio knapsack constraints and stable sets of interval graphs. Moreover, we show
that all these classes, except for k-systems, are closed under parallel extension, restriction, and
contraction. More importantly, we provide a new characterization of k-extendible systems as exactly
those k-systems whose contractions remain k-systems.

1.2 Related Work

Online Matchings and Combinatorial Assignment. The baseline is unweighted one-sided
bipartite online matching, where the Ranking algorithm achieves the optimal ratio 1 — 1/e [41].
Secretary-style generalizations introduce weights and random arrival, leading to two standard models
in general graphs: vertez arrival (upon a vertex’s arrival, incident edges to previously seen vertices
are revealed and must be acted on immediately) and edge arrival (edges appear one by one, each



requiring an irrevocable decision). Early secretary formulations on graphs and hypergraphs are
due to Korula and P4l [48]. For general graphs, Ezra, Feldman, Gravin, and Tang [29] established
tight bounds of 5/12 for vertex arrival and an exponential-time 1/4 for edge arrival, with the
latter later made polynomial-time in [57]. In bipartite weighted settings with budgets (AdWords),
online allocation under random order was modeled and analyzed by Mehta, Saberi, Vazirani, and
Vazirani [58], while related secretary-style approaches for weighted bipartite matching and its
extensions were developed by Kesselheim, Radke, Tonnis, and Vocking [42]. Beyond graphs, online
submodular welfare captures diminishing-returns valuations over arriving items and admits a 1/2-
competitive greedy algorithm, which is optimal among polynomial-time algorithms under standard
assumptions [40]. A unifying abstraction for these problems is online combinatorial assignment over
independence systems, where agents arrive with (possibly multi-weight) preferences over a fixed
feasibility family (e.g., k-hypergraph matchings, matroids, matroid intersections, matchoids), and
the algorithm assigns at most one feasible element per agent while maintaining independence [57].

Prophet Inequalities and Online Contention Resolution Schemes. Secretary problems are
closely connected to prophet inequalities, a model that has attracted significant attention due to its
applications in mechanism design and auction theory [3,4,5,6,11,12,16,17,19,20,21,25,26,30,36, 71].
In the prophet inequality framework, the element weights w(e) are drawn independently from known
distributions, and the arrival order is typically adversarial. The classical single-item result of Krengel,
Sucheston, and Garling [49,50,67] established the optimal 1/2-competitive ratio, later extended to
matroid constraints by Kleinberg and Weinberg [45], who also obtained a 1/(4k — 2)-competitive
ratio for intersections of k matroids. The best current upper bound was recently improved to slightly
better than ©(1/v/k) [68]. Subsequent work has explored various arrival models, usually achieving
stronger guarantees. In the free-order setting, where the algorithm can choose the order of arrivals,
early progress was made by Beyhaghi, Golrezaei, Paes Leme, Pal and Sivan [10] and Peng and
Tang [63], with the current best competitive ratio of 0.7258 due to Bubna and Chiplunkar [14].
Determining the optimal competitive ratio in this setting remains a central open question in optimal
stopping theory.

Secretary problems are also closely related to online contention resolution schemes (OCRSs),
which play a central role in Bayesian mechanism design and posted-price mechanisms [18,33,65, 66].
OCRSs share many conceptual similarities with prophet inequalities and can be combined in a black-
box way, both properties that align with several ideas developed in this paper. Feldman, Svensson,
and Zenklusen [33] introduced the first OCRSs for matroid, matching, and knapsack constraints,
achieving a 1/(e(k + 1)) guarantee for k-matroid intersections. Lee and Singla [52] later obtained
optimal guarantees for matroids under a slightly stronger assumption of a weaker adversary. Despite
this progress, determining the optimal OCRS guarantees for matroids, matchings, and knapsacks
remains an active area of research [13,28,29,54,55,56,61,64]. Recently, Dughmi [22,23,24] established
a deep and beautiful equivalence: obtaining constant-factor OCRSs for matroid constraints in the
random-order setting — for any correlated distribution for which such guarantees exist offline — would
imply the matroid secretary conjecture.

The k-system Hierarchy. The notion of a k-system goes back to the classical analysis of greedy
algorithms for independence systems by Jenkyns [39] and by Korte and Hausmann [47], who
characterized approximation guarantees in terms of the rank quotient, that is, the ratio of the
largest and smallest bases of a subset. This concept was later adopted under the name p-system in
submodular maximization [15]. Jenkyns [39] also implicitly introduced the notion later referred



to as k-circuit-bounded systems, although no explicit name was proposed in that work. The class
of k-extendible systems was introduced by Mestre [59], who identified it as a natural subclass of
k-systems for which the greedy algorithm achieves a 1/k-approximation for linear objectives, thereby
fitting into the hierarchy

k-matroid intersection C k-matchoid C k-circuit bounded C k-extendible C k-system.

However, most previous work on k-systems has focused on their algorithmic applications, mainly in
the analysis of greedy and submodular maximization algorithms. As a result, these systems are well
understood from a performance-guarantee perspective but much less from a combinatorial one. In
particular, their basic structural properties have not been studied in a systematic way.

1.3 Organization

We start with Section 2, where we describe our bipartite graph model and present some necessary
preliminaries and definitions. In Section 3 we describe our algorithm for k-matroid intersection,
presented in a black-box way as it will be used for our later results as well. In Section 4 we
define our new independence class of k-growth systems and present our generalized Core lemma for
combinations of k-growth systems. Section 5 contains our results for the agent-arrival model. We
then extend the agent-arrival setting to allow multiple items per agent when the agents’ constraints
are unrelated in Section 6. We conclude in Section 7 by relating k-growth systems to the other
classes in the k-systems hierarchy and describe several interesting properties of the hierarchy classes.

2 The Bipartite Graph Model

In this section, we define our proposed bipartite graph model for free-order secretary problems. We
begin with the basic notation; all further terminology is introduced as needed. We denote the sets
of reals and integers by R and Z, and add the subscripts + when referring to nonnegative values.
For a positive integer k, we write [k] :== {1,...,k}. Given a ground set S, a subset X C S, and an
element y € S, we abbreviate X \ {y} and X U {y} as X —y and X + y, respectively, and write
{z} simply as & when no confusion arises. For a p € [0,1] and a set S of elements, we use S(p)
to denote a random subset of S where every element appears independently with probability p.
For a function w: S — Ry, we use w(X) =) -y w(z). If G = (V,E) is a graph, and S C V is a
subset of vertices, we use §(.5) to denote the set of edges with one endpoint in S and one endpoint
outside S. Let us first recall the definition of independence systems and matroids.

Definition 1 (Independence System). An independence system F = (S,Z) consists of a finite set S
and a family of independent sets T C 25 satisfying the following two properties:

(I1) Z is non-empty,

(I2) 7 is downward closed, that is, I € Z implies J € Z for all J C I.
Note that conditions (I1) and (I2) together implies ) € Z. Any set X ¢ T is called dependent. The

inclusion-wise minimal dependent sets are called circuits, and a circuit of size 1 is called a loop. For
any subset X C S, the inclusion-wise maximal independent subsets of X are called bases of X.

Examples of independence systems include matroids, matchings in hypergraphs, matchoids,
k-extendible systems, and k-systems (see Section 7 for details and definitions). Below, we provide a
few basic definitions for matroids and refer the reader to [62] for an extensive treatment.



Definition 2 (Matroid). A matroid M = (S,Z) is an independence system that satisfies the
following augmentation property:

VI,JeZ, |I|<|J| = Jee J\I such that TU{e} € 7.

This property is equivalent to the statement that, for every X C S, all maximal independent subsets
of X (the bases of X) have the same cardinality. With this, one defines the rank of X, denoted by
r(X), as the common size of the bases of X. The closure (or span) of X is

span(X) = X U {ee S\ X : r(X U{e}) =r(X)}.

Throughout the paper, we consider independence systems equipped with a nonnegative weight
function w : S — Ry on the ground set, with distinct values. This standard assumption avoids
tie-breaking issues and lets us focus on structural and algorithmic aspects. For X C S, let OPT(X)
be a maximum-weight basis of X with respect to w. In general independence systems, OPT(X)
need not be unique even under distinct weights; one can fix uniqueness via a lexicographic rule. In
matroids, however, the maximum-weight basis under distinct weights is unique.

Definition 3 (Weighted greedy on X). Given X C S, the weighted greedy algorithm processes the
elements of X in non-increasing order of w and builds a set G starting from (), adding an element e
when G U {e} € Z. We denote its output by Greedy(X).

The following proposition, by Korte and Hausmann [47], relates the weighted greedy algorithm
to k-systems.

Proposition 1. For matroids, Greedy(X) is the unique mazimum-weight basis of X under distinct
weights, i.e., Greedy(X) = OPT(X). More generally, an independence system is a k-system if and
only if, for every X C S and every nonnegative weight function w, the greedy algorithm yields a
k-approximate maximum-weight basis, i.e.,

w(Greedy(X)) > —w(OPT(X)).

1
k
2.1 Free-order Bipartite Secretary Model
Let G = (AU B, F) be an undirected bipartite graph. We refer to A as the “agent” side and B
as the “item” side. Let w: F — R4 be a nonnegative injective weight function over the edge set.
Furthermore, let F4 = (A,Z4) and Fp = (B,Zp) denote independence systems over the vertices on
the agent and item side, respectively. In the bipartite secretary model, we are given G, F4, and Fp
as input.” We say that a set of edges F' C E is a feasible matching if

(i) F is a matching in G.

(i7) The set of agents incident to F', {a € A|d(a) N F # 0}, is independent in F4.
(i4i) The set of items incident to F', {b € B|§(b) N F # 0} is independent in Fp.

®Similarly to matroid algorithms, we assume that independence systems are given via an independence oracle that,
for a given set X, answers yes or no depending on whether X is independent or not.
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If an edge {a,b} is in F' we say that item b is assigned to agent a. The weight function w over the
edges is initially unknown and revealed over sequential rounds. An algorithm for this problem starts
with an empty set of edges ALG. In round 4, one or more edges may be revealed, and at the end of
the round, the algorithm must immediately and irrevocably decide to add a subset F; of the edges
revealed in that round, to the current solution ALG , under the condition that ALG is always a
feasible matching. The goal is to select a maximum-weight feasible matching. We focus on two
versions of the model, differing in how rounds are defined:

(EA) Edge Arrival: at each round, a single new edge reveals its weight.

(AA) Agent Arrival: at each round, the set d(a) of all edges incident to some agent a € A reveal
their weights simultaneously.

In the free-order setting, the algorithm adaptively chooses the next object to be revealed: the
next edge in (EA) or the next agent in (AA). This formulation is remarkably powerful: it generalizes
several settings previously studied in the literature, even when F4 and Fp are simple constraints
such as matroids. We briefly discuss these connections below.

2.2 Relation to Existing Models

We begin by noting that the free-order edge-arrival variant is exactly the free-order secretary
problem over the independence system of feasible matchings induced by (G,Z4,Zp). Consequently,
rather than analyzing this specific instance, we develop our results (and state existing ones) for the
free-order model on general independence systems. Let us focus on the case when both F4 and Fp
are matroids. We distinguish between different cases according to their respective matroid classes.

Fa and Fp are both free matroids. In this setting, the edge arrival model coincides with
the bipartite matching secretary problem, for which there exists a 1/4-competitive (polynomial-
time) algorithm even in random-order [57]. For the agent arrival model, on there is an optimal
1/e-competitive algorithm in random-order [42].

F4 is a general matroid and Fp is a free matroid. For the specific case in which the graph G
itself is a matching, both the edge and the agent-arrival model coincide with the free-order matroid
secretary problem, for which there exists a 1/4-competitive algorithm [37, Theorem 2|. For general
graphs, neither version has been studied before.

F4 is a free matroid and Fp is a general matroid. Here, the edge arrival model is the same
as in the above setting where F4 is a general matroid and Fp is the free matroid. Surprisingly,
the agent arrival model is equivalent to the classical matroid secretary problem under a uniformly
random arrival order. To see this, let G be a complete bipartite graph. The adversary can choose a
random perfect matching X of the graph and assign non-zero weights only to edges in X. Every
time we observe the weights of edges incident to an agent in any order, we only observe one edge
with positive weight, and we can only select it at that moment. Since all agents look the same
before they arrive, the order in which they arrive does not matter, and we are forced to select it
uniformly at random. Therefore, we recover the classical matroid secretary problem.

F4 and Fp are both general matroids. Note that the set of edges we can choose at the same
time actually forms an independent set in the intersection of F4 and Fp. To see this, consider
the following standard construction. Let M4 = (F,J4) be the matroid where, for each agent
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a € A, all edges in §(a) are treated as parallel copies of the same element in F4. This way, each
agent a can be matched to at most one item e and the constraint for F,4 is satisfied. Using the
same approach, define another matroid Mp = (F, Jp) using the item side. By construction, any
feasible matching is an independent set that belongs to both M4 and Mpg. In the edge arrival
model, no constant-competitive guarantee was known for this setting prior to our work. We obtain
a 1/64-competitive algorithm (Corollary 1) for this setting.

In the agent-arrival model, this framework generalizes the case where F4 is the free matroid
and Fp is an arbitrary matroid, and is therefore at least as hard as the classical matroid secretary
problem under a uniformly random order. Nevertheless, we will see that if the matroid constraint is
simple enough (see Section 5) we can achieve a constant competitive algorithm for this setting too.

2.3 Additional definitions

Competitive ratio. Let (S,Z) be an independence system and let w : S — R4 be injective (all
weights distinct and positive). Fix a maximum-weight basis OPT = OPT(S) € Z (for matroids with
injective weights, this basis is unique, so the choice for that case is canonical). We say an algorithm
for any of the considered variants of the secretary problem is a-probability-competitive if, for this
fixed OPT, every e € OPT is included in the algorithm’s output ALG € Z with probability at least
a. We say the algorithm is a-utility-competitive if the output satisfies E[fw(ALG)] > aw(OPT).
Note that a-probability-competitiveness implies a-utility-competitiveness, since

E[w(ALGNOPT)] = > w(e)Prle € ALG] > a - w(OPT).
ecOPT

Combinations of independence systems. In most of our results we work with independence
systems obtained from simpler ones via an operation we call combination, which strictly extends
the usual intersection. Let {(Sj,Ij)}j]Vil be independence systems. Their combination is the system
(S,7) where

M
S=Js, and I={ICS:Vje[M], InS;eT;}.
j=1

Note that if all S; coincide, the combination reduces to the intersection ﬂjj‘il Z; on that common
ground set.

Example: Matchings and k-matchoids. For a graph G = (V, E), the family of matchings
M= (E,I)withZ={FCE: YveV, [0(v)NnF| <1} is exactly the combination of the rank-1
uniform matroids at each vertex, M, = (§(v),Z,) with Z, = { F}, C §(v) : |F,| < 1}. Each edge
of E belongs to exactly two components (those of its endpoints). More generally, k-matchoids are
exactly combinations of matroids in which each element belongs to at most k components (see
Section 7); these strictly generalize k-matroid intersections.

Example: Generalized Assignment Problem (GAP). Let A be agents, B jobs, and E' = A X B,
where (a,b) means assigning job b to agent a. Each agent a has time budget T, > 0, and processing
b on a consumes t,(b) > 0. For each a € A, define a knapsack system on d(a) = {(a,b) : b € B}
by Zo = {F C 0(a) : X 2(,p)epta(b) < Ta}. For each b € B, define a rank-1 uniform matroid on
5(b) ={(a,b) :a € A} by I, = {F C §(b) : |F| < 1}. The feasible assignments for the GAP problem
are exactly those in the combination of the per-agent knapsacks (d(a),Z,) and the per-job rank-1
uniform matroids (4(b),Zp).
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Algorithm 1: Free-order Matroid Secretary [37]
Input: A matroid M = (S,7).
Output: An independent set ALG € 7.

1 ALG + 0

2 for each e € S do Choose t. independently and uniformly from (0, 1)

3 51+ {e|te €(0,1/2)}

a4 Sy« {el|te €[1/2,1)]}

5 Observe (without accepting) all elements in S}

6 unseen < Sy // The set of elements not yet revealed
7 Sort the elements of S7 in decreasing order of weights as ey, ..., en

8 for j =1 tom do

9 Let Q = unseen Nspan({ei,...,e;})

10 for each f € Q in uniformly random order do

11 unseen < unseen — f // Reveal f
12 if w(f) > w(a;) and ALG+f € Z then ALG + ALG+f

13 end
14 end
15 () + unseen
16 for each f € Q in uniformly random order do

17 ‘ if ALG+f €Z then ALG «+ ALG+f

18 end

19 return ALG

3 Free-Order Secretary Problem on k-Matroid Intersection

In this section, we present our algorithm for k-matroid intersection. Before that, we briefly recall
the 1/4-competitive free-order matroid secretary algorithm of Jaillet, Soto, and Zenklusen [37, 38].

3.1 Warm-up: Free-Order Matroid Secretary

Let M = (S,Z) be a matroid given in advance, and let w: S — R4 be an unknown positive weight
function, where, without loss of generality, all elements have distinct weights. For the sake of
completeness and to motivate future extensions, we include a proof of the following result that
appeared in [37,38]; the algorithm is presented as Algorithm 1.

Theorem 2 (Jaillet, Soto, Zenklusen [37,38]). Algorithm 1 is 1/4-probability competitive for the
free-order matroid secretary problem.

Proof. Let OPT be the unique maximum weight basis of S and fix f € OPT. Let hy be the heaviest
element in S7 — f such that f is spanned by the elements of higher weight than h; in S; — f. In
other words,

hy == argmax {w(h) | h € S; — f such that f € span({g € S1 — f|w(g) > w(h)}}.

Similarly, let ho be the heaviest element in Sy — f such that f is spanned by the elements of higher
weight than he in So — f. In other words,

hg = argmax {w(h) | h € So — f such that f € span({g € S2 — f|w(g) > w(h)}}.
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If there are no such elements, we set h; = L and hy = L, respectively, with w(L) = 0.

Since S1 — f and S2 — f are identically distributed, we have that Pr{w(hi) > w(h2)] = 1/2,
regardless of whether one or both of hA; and hy are L. Next, we condition on the independent event
that f € So, and conclude that both w(hy) > w(hs) and f € Sy occur together with probability at
least 1/4. In what follows, we condition on these two events occurring. Since f € OPT, we know
that f ¢ span({g € S| w(g) > w(f)}). Thus, w(f) > w(hi) > w(ha).

Recall from the description of the algorithm that S; is ordered in decreasing order of weights
as e1,...,6n. Assume that hy is the j*-th highest weight element of Si, that is, h1 = e;«, where
we set j* =m + 1if hy = L. By construction, f is revealed by the algorithm precisely in iteration
7%, when it first enters the set (). Therefore, at the moment when f is revealed, f satisfies both
w(f) > w(ej) =w(hi) and ALG +f € Z, and thus f is included in ALG. We thus conclude that
for every f € OPT, Pr[f € ALG] > 1/4. O

Theorem 2 shows that, for a single matroid, it suffices to use half of the elements as a sample
to determine both an order in which to reveal the remaining elements and thresholds w(e;) for
those called in the j-th group, in order to obtain a constant-factor competitive algorithm. The
algorithm then processes the elements in this order and greedily selects those whose value exceeds
their threshold. Interestingly, the order in which elements are revealed depends on the span of
prefixes of the sampled set, that is, {e1,...,e;}, when the elements are sorted by weight. Our
generalization to k-matroid intersection systems builds directly on this observation.

3.2 Obstacles and Workarounds

Next, we consider the k-matroid intersection setting. Let M; = (S,Z;) be a matroid for ¢ € [k], and
let M = (S,T), with Z = Nf_,Z;, be their intersection. When we try to generalize Algorithm 1 to
the intersection of k& matroids, two main obstacles arise. First, the spans of the prefixes {e1,...,e;}
across the matroids can be completely unrelated. In fact, the best order to reveal the non-sampled
elements for one matroid may even be the reverse of the best order for another. Second, even if we
had a favorable order, there is no hope for a constant-factor probability-competitive algorithm. This
is because matroids satisfy a minor-optimality condition that does not extend to matroid intersection.
Specifically, for a single matroid, if f € OPT(S), then f € OPT(X) for any subset X C S containing
f. For matroid intersection, however, this monotonicity condition can fail; OPT(S) may contain
f, but removing a single element e € S — f can lead to OPT(S — e) omitting f entirely. Thus, we
have to rely on utility-competitiveness instead.

Union-Span and Critical Elements. To circumvent the first difficulty, a natural approach is to
use the union-span: for each prefix {e1,...,e;}, we “call” all unseen elements that are in the union
of all individual matroid span functions. Notice that the elements that are in the intersection of the
optimum matroid bases of all individual matroids are exactly those elements not union-spanned by
elements in S of higher weight; we call these the critical elements.

A natural first idea is to use Algorithm 1 to select each critical element with probability 1/4.
However, even for simple matroid intersection systems, such as bipartite matchings, the set of
critical elements may have insufficient weight relative to the optimum independent set. To see
this, consider the following bipartite matching system over a simple path ey, ..., e, with weights
1+¢e>w(e) > -->w(e) = 1. Note that, for each i > 2, every element e; is union-spanned by
€;—1, S0 e1 is the only critical element. Therefore, even though the weight of a maximum matching
is roughly ¢/2, the only critical element has weight 1. This shows that, in general, the set of critical
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elements may have arbitrary low weight compared to the optimum basis. Given this, one might
expect that the issue could be resolved by considering the set of critical elements with respect to a
random subset of S instead of S itself. This approach fails as well, however: for instance, there may
be many parallel elements with the same weight, or elements that are loops in some matroids but
not in others.

Greedy-Relevant Elements. To address the second issue mentioned above, we use a different set,
first defined by Feldman, Svensson and Zenklusen [34].

Definition 4 (Greedy-Relevant Elements). Let Y C S. We say that an element y € S\ Y is
greedy-relevant with respect to Y if y belongs to the output of the weighted-greedy algorithm on
Y +y. We use Rel(Y) to denote the set of greedy-relevant elements of Y. In other words,

Rel(Y)={ye S\Y |y € Greedy(Y +y)}.

Feldman, Svensson and Zenklusen [34] showed that if every element of S is contained in Y with
probability p for some large enough p > 0, then the set of critical elements of Rel(Y') has high
enough weight compared to the weight of the set Greedy(Y') that the weighted-greedy algorithm
selects on Y. More precisely, they showed the following lemma.

Lemma 1 (Core Lemma for Matroid Intersection). Let (S,Z) be a k-matroid intersection system
and Y =Y (p) be a random set that contains each element of S independently with probability p for
some p € [0,1]. Then

k
E [w <ﬂ(OPTZ~(Rel(Y))>

>E {(1 —d _]Zk))(l _p)w(Greedy(Y))
- (-pk)-
- k

D)y (OPT(S)),

where OPT; represents the optimum weight basis in the i-th matroid, and OPT is the optimum
weight basis of the k-matroid intersection system. Choosing p =1 — i yields

k
E [w (ﬂ(OPTi(Rel(Y))>

=1

1
> o5 w(OPT(S)).

Hull and Core. Given Lemma 1, we are almost ready to describe our algorithm for k-matroid
intersection. The main difference from the algorithm for a single matroid is that we first sample
a relatively large set of elements Y in order to identify a good subset Rel(Y') of greedy-relevant
elements, and then execute the free-order algorithm on Rel(Y'). We note that this algorithm can
be applied in a black-box manner to more general independence systems, assuming that one has
appropriate notions of critical elements and what it means for an element to be spanned by a set.
We will make use of this observation in later sections; for this reason, the algorithm is presented in
its general form.

To describe our algorithm in its general form, we need to generalize the notion of span from
matroids and also describe a set of core elements that will play the role of OPT for more general
independence systems.
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Definition 5 (Primitive Hull). Let (S,Z) be an independence system. We define the primitive hull
function PHull: 25 — 29 by

PHull(X) :== X U{e € S|eisin a circuit of X +e}.

Notice that, for a single matroid constraint, PHull is equivalent to the matroid span function.
In fact, PHull satisfies the following useful properties.

(H1) (Inclusion) For all X C S, X C PHull(X).
(H2) (Monotonicity) For all X, Y C S with X C Y, we have PHull(X) C PHull(Y).

(H3) (Basis Extension) For all X C S and e € S\ X, if e ¢ PHull(X) then for any I C X such that
I €7, we have I + e € Z. In particular, if X € Z, then X +e € 7.

On the other hand, PHull does not necessarily satisfy some properties of the matroid span function,
such as span(span(X)) = span(X).

For combinations of systems, however, we use the union of the primitive hulls of each system.
We call this the hull.

Definition 6 (Hull). Let F = (S,Z) be a combination of systems {(Sj,Ij)}j]\il. We define the hull
function Hull: 25 — 25 of F by

M
Hull(X) == ] PHull;(X N S)),
j=1

where PHull; is the primitive hull of (S},Z;).

It is worth mentioning that, if F is a combination of two or more systems, PHull C Hull but the
reverse is not true, even for the intersection of two matroids. To see this, suppose that F is the
intersection of two matroids M; and Mj and consider three elements x,y and a such that {z,y,a} is
a circuit in M; and {x,y} is a circuit in M. Let X = {z,y}. Then, a € PHully, (X), which implies
that a € Hullz(X), but a ¢ PHullz(X) since X = {z,y} is itself a circuit in F and thus adding a
to X does not create any new circuits. However, notice that, for k-matroid intersection, we have
PHull; = span; for every component system (S4,Z;), and thus Hull is equivalent to the union-span.

We notice that the function Hull just defined satisfies all (H1), (H2) and (H3). The inclusion and
monotonicity properties of Hull follow directly from the corresponding properties for the individual
primitive hulls. To see the basis extension property, observe that, for X C S and e € S\ X, we have

e¢ Hull(X) < Vj, e¢ PHU.Hj(XﬂSj)
<— VY, VIngﬂSjS.t.IjEIj, I +e€l;
<= VICXst.IeZ I+ec?

Next, we define the set of critical elements for larger families of systems beyond matroids. We
call this the set of core elements.

Definition 7 (Primitive Core). Let (S,Z) denote an independence system and let w: S — R4
denote an arbitrary injective weight function. For any set X C S and element e, let A.(X) =
{f € X]w(f)>w(e)} denote the set of elements with weight higher than X. We define the set of
primitive core elements as

PCore(X) ={e€ X |e ¢ PHull (A.(X))}.

16



In other words, an element x € X that is in the primitive core of X cannot be the smallest
element of any circuit in X. Equivalently, x is in the primitive core of X if, for every independent set
I'eZ withI C{ye X |w(y)>w(x)}, we have I +x € Z. Note that the last formulation implies
that = belongs to every basis of {y € X | w(y) > w(z)}. Recall that Greedy(X) denotes the set of
elements selected by the weighted-greedy algorithm on X.

Lemma 2. For all X CY C S, we have X NPCore(Y) C PCore(X) C Greedy(X).

Proof. Let e € X NPCore(Y). For any circuit C' with C' C Y, e cannot be the smallest element
of C. In particular, the same holds for every circuit contained in X, and so e € PCore(X). Next,
let e € PCore(X), and suppose we run the weighted-greedy algorithm on X. Let H be the set
constructed by greedy just before e is considered. Note that H is an independent set contained in
{y € X |w(y) > w(x)}. Since e € PCore(X), we have that H + e € Z, and so e is added to the set
constructed by the weighted-greedy algorithm. O

One consequence of Lemma 2 is that PCore(X) is always independent for any X. However, if F
is a matroid, we have a stronger property.

Lemma 3. Let M = (S,Z) be a matroid. For any X C S, we have
PCore(X) = Greedy(X) = OPT(X),
where OPT(X) denotes the unique maximum weight basis of X.

Proof. The first equality follows since, for a matroid with distinct weights, e € Greedy(X) if and
only if e is not spanned by elements of higher weight, which exactly corresponds to the definition of
e € PCore(X). The second equality holds since, for matroids, the greedy algorithm on X returns
the optimum basis of X. ]

This equivalence fails to hold for more general independence systems. In fact, even for the
intersection of two matroids, the sets PCore(X), Greedy(X), and OPT(X) may be all different. For
combinations of systems, we use the intersection of the primitive cores of each system. We call this
set the core and its elements the critical elements.

Definition 8 (Core and Critical Elements). Let F = (S,Z) be a combination of systems {(S}, Ij)}jj‘il
and w: S — Ry be an arbitrary weight function. We define the core of a set X C S as
M
Core(X) = ﬂ ((X'\ Sj) UPCore;(X NSj)),
j=1

where PCore; is the primitive core of (S;,Z;). We call the elements in Core(X) the critical elements
of X.

Notice that, for the case of k-matroid intersection, we have
e € Core(X) <= Vj, e € PCorej(X) <= Vj, e ¢ PHull;({f € X |w(f) > w(e)})
= Vj, e¢span;({f € X [w(f) > w(e)})
< Vj, ee OPT,(X).
In other words, for the intersection of k£ matroids, Core(X) is exactly ﬂ;?:l OPT;(X). It is easy

to see that, for a combination of systems, the relationship between the core and the hull from the
component systems extends to the entire combination.
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Observation 1. Let F = (S,Z) be a combination of systems {(Sj,Ij)}inl and w: S — R4 be an
arbitrary weight function. Then, for all X C .S and e € X,

e € Core(X) <= e¢ Hull({f € X |w(f) > w(e)}).

Proof. Let PHull; and PCore; denote the primitive hull and primitive core of (S;,Z;), respectively.
We have

e € Core(X) < Vj, (e ¢ Sj)V (e € PCore;(X NSy )
> Vj, (e ¢ 5;) V(e ¢ PHull;({f € X NS [w(f) >w(e)}))
— e¢ Hull({f € X |w(f) > w(e)}). O

Algorithmic Aspects. Our black-box algorithm depends on the ability to solve the following
problem for the given feasibility constraint: given a set X and an element e, is e € Hull(X)? Since
Hull is defined as the union of PHull; over all system components Fj, this problem reduces to
testing whether e € PHull;(X) for some set X and e.

Fix a system component F;. Whenever F; is a matroid, computing PHull;(X) = span;(X) can
be done in polynomial time. For the case of knapsack constraints, we can compute PHull;(X) by
solving a knapsack subproblem, which can be done in pseudopolynomial time. However, for general
systems, computing Hull(X) can be arbitrarily hard; we do not pursue this direction here, as it lies
outside the scope of the present work.

3.3 Free-Order Secretary Algorithm for k-Matroid Intersection

We now have all the necessary ingredients to design a general free-order algorithm that applies
to any system admitting a well-defined Hull function, presented as Algorithm 2. The following
theorem relates the expected weight of the independent set returned by our algorithm to that of
Core(Rel(Y)), where Y is a random subset of S.

Theorem 3. Let (S,Z) be an independence system and Y = Y (p) be a random set where every
element of S is in'Y independently with probability p for some p € [0,1]. Then, Algorithm 2 returns
an independent set ALG such that, for every f € Core(Rel(Y)),

Pr(f € ALG] > %

Proof. First, note that the algorithm always returns an independent set, since before adding any
element e to ALG, it explicitly checks whether ALG 4+e € Z. We now condition on the set Y.
Observe that Rel(Y) C S; U Ss, and let B := Core(Rel(Y')). We next show that each element of
B is added to ALG with probability 1/4. The proof of this fact follows the same argument as in
Algorithm 1, but we include it here for completeness.

Fix f € B and let h; be the heaviest element in (S — f) N Rel(Y) such that f is in the hull of
the elements of higher weight than h; in (S7 — f) NRel(Y). In other words,

hy = argmax {w(h)|h € (S — f) NRel(Y) s. t. f € Hull({g € (S1 — f)NRel(Y) |w(g) > w(h)}}.

Similarly, let ho be the heaviest element in (S3 — f) NRel(Y) such that f is spanned by the elements
of higher weight than hs in (S — f) NRel(Y). In other words,

he == argmax {w(h) | h € (S2 — f)NRel(Y) s. t. f € Hull({g € (S2 — f) NRel(Y) |w(g) > w(h)}}.
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Algorithm 2: Free-Order General Secretary

Input: An independence system (S,Z), a parameter p.
Output: An independent set ALG.

1 ALG+ 0 and g+ (1+p)/2

2 for each e € S do Choose t. independently and uniformly from (0, 1)

3Y «{e|t.€(0,p)}

4 S1+{eltecp,(1+p)/2)}

5 Sy« {e|te € [(1+p)/2,1]}

6 Observe (without accepting) all elements in Y U Sy

7 unseen < S // The set of elements not yet revealed
8 Sort the elements of Rel(Y) NS in decreasing order of weights as ey, ..., emn

9 for j =1 tom do

10 Let Q = unseen N Hull({e1,...,¢;})

11 for each f € Q in uniformly random order do

12 unseen < unseen — f // Reveal f
13 if f € Rel(Y) and w(f) > w(e;) and ALG+f € Z then

14 ‘ ALG «+ ALG+f

15 end

16 end
17 end

[y
[0

Q) + unseen

19 for each f € Q in uniformly random order do

20 | if f €Rel(Y) and ALG+f €7 then ALG < ALG +f
21 end

22 return ALG

If there are no such elements, we set hy = L and hy = L, respectively, with w(L) = 0.

Since, conditioned on Y, the sets (S; — f) N Rel(Y) and (S2 — f) N Rel(Y) are identically
distributed, we have that Pr{w(hi) > w(he)] = 1/2, regardless of whether one or both of h; and
ho are 1. Next, we condition on the independent event that f € S, and conclude that both
w(h1) > w(ha) and f € Sy occur together with probability at least 1/4. In what follows, we
condition on these two events occurring.

We now verify that f satisfies all the conditions for inclusion in ALG in lines 13 and 20 of
Algorithm 2. Since f € Rel(Y), the first condition is satisfied. Next, recall that, S; N Rel(Y) is
ordered in decreasing order of weights as ey, ..., e,. Assume that hy is the j*-th highest weight
element of S; N Rel(Y), that is, hy = ej+, where j* = m + 1 if hy = L. By construction, f is
revealed by the algorithm precisely in iteration j*, when it first enters the set (). Furthermore, since
f € Core(Rel(Y)), by the monotonicity of Hull we conclude that

f ¢ Hull({g € Rel(Y) | w(g) > w(f)}) 2 Hull({g € Rel(Y) N Sy [w(g) > w(f)}).

Thus, w(f) > w(hy) > w(hs), so we satisfy the second condition of line 13.
Let ALG’ denote the solution immediately before f is revealed, and note that all elements in
ALG' are in Rel(Y) N Sy and have weights larger than w(ej-). There are two possibilities. First, if
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ha # L, since w(ej+) = w(hi) > w(ha) by the definition of h; and hs, we have
f ¢ Hull({g € (S2— f)NRel(Y): w(g) > w(ej+)}) 2 Hull(ALG').

Here, the last containment follows by the monotonicity of Hull, since all elements considered by
ALG’ for addition had weights larger than w(e;«). Second, if hy = L then, again by the monotonicity
of Hull, we have

f ¢ Hull((S2 — f) NRel(Y)) 2 Hull(ALG).

It follows that at the moment when f is revealed, f ¢ Hull(ALG’), and thus ALG’ +f € Z by the
properties of Hull. We conclude that all conditions hold, and therefore f € ALG. We have shown
that for every realization of Y and every f € B = N, Core(Rel(Y)), Pr[f € ALG | Y] > 1. Since
this holds for every realization of Y, by unconditioning, we get that Pr[f € ALG] > % as stated. [

We now combine Lemma 1 and Theorem 3 to get the following corollary.

Corollary 1. Let (S,Z) be a k-matroid-intersection system. For p =1 —1/2k, Algorithm 2 returns
a set ALG such that

E[w(ALG)] > Fll{;Zw(OPT).

Next Steps. In the following sections, we extend both Lemma 1 and Theorem 3 in two different
directions. First, we define and explore a new class of independence systems, called k-growth
systems, which includes k-matchoids as well as knapsack constraints with bounded size ratios; this
new class is already of independent combinatorial interest on its own. We then generalize the Core
Lemma (Lemma 1), first to k-matchoids and then to general k-growth systems. Using appropriate
notions of Hull for both systems, we recover 2 (1 / k2)—utility competitive guarantees for both, in
the free-order setting.

Second, we turn to the agent-arrival bipartite graph model. All the results above apply directly
to the edge-arrival case, provided the edge independence system belongs to one of the studied classes.
However, these results do not naturally extend to the agent-arrival setting, where multiple edges
are revealed simultaneously. We overcome this difficulty by establishing a new version of the Core
Lemma that holds for a random subset Y of agents rather than edges. Equipped with this tool, we
design a new algorithm for the agent-arrival model in settings where the independence system on
the item side admits an order-oblivious algorithm.

4 Free-Order Secretary on Combinations of Growth Systems

In this section, we extend Lemma 1 to a new and broader class of independence systems that
contains k-matchoids and knapsack constraints with bounded size ratios.

4.1 Growth Systems and Combinations

The goal of this section is to introduce a novel class of independence systems with interesting
structural properties. We call this the class of k-growth systems, and present the definition below;
a more detailed discussion of its properties and its relationships to other classes of independence
systems is provided in Section 7.
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Definition 9 (k-growth system). Let F = (5,Z) be an independence system and k be a positive
integer. We say that F is a k-growth system if it satisfies the following k-Basis-Growth (kBG)
axiom.

(kBG) VX C S, VI €7, there exists a partition (Q, Z) of I\ X with |Z| < k|X \ I] such that
(x1) for every basis P of X, PUQ € T.

Many independence systems that arise in applications can be viewed as combinations of simpler
component systems. For example, k-matchoids are formed as the intersection of n matroids — where
n may be much larger than k — under the condition that each element is a not a co-loop in at most &k
of them. As it turns out, k-growth systems enjoy a similar combination property that will be useful
for our analysis: the combination of k;-growth systems is itself a growth system, with a parameter k
determined by the k;’s of the individual components. More importantly, the union of the individual
Hull functions of each component is the Hull function for the combined system. We exploit this
latter property to obtain an improved result for combinations of systems whose components are
matroids. The proof of the following lemma can be found in Section 7.

M

Lemma 4. Let F = (5,Z) be a combination of systems {(5},Z;)},Z,,

kj-growth system. Then, F is a k-growth system, where

where each (5;,Z;) is a

k = max k;.
eeS |
j:e€S;
In particular, for each X C S and I € Z, there exists a collection of sets Z; C (I \ X) N S; such
that, for every basis P of X, we have PU ((I\ X)\ Ujj\il Zj) € I, and, for all j € [M],

2, < [HENDNS) (XN ik =1,
T k(XN NS itk > 1,

where 7; denotes the rank function of the j-th component (S;,Z;). In particular, |Z;| < k;|(X\I)NS}]|
for j € [M], since r; is a matroid rank function when k; = 1.

4.2 The Core Lemma for Combinations of Growth Systems

We are now ready to describe the main result of this section: our generalization of the Core Lemma
of [34] from intersections of matroids to combinations of growth systems.

Lemma 5 (Core Lemma for Growth Systems). Let F = (S,Z) be a combination of systems
{(Sj,Zj)}jj\il where each (Sj,Z;) is a kj-growth system, and let Core be the Core of F. Also,
let k = maxecp Zj: ces, kj, and' Y = Y (p) be a random set where every element of S is in Y
independently with probability p for some p € [0,1]. Then,

(- (A-pk)A-p)

E [w (Core (Rel(Y)))] > 2

[w (Greedy(Y))] .

Furthermore, if all components are matroids, i.e. F is a k-matchoid, then

E [w (Core (Rel(v)))] > =1 —p)(l; DA =P) gy (Greedy (YY)
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Algorithm 3: Simulation algorithm
1 RN,R'\,N +
2 fort =1 tom do

3 Toss a coin ¢; that is heads with probability p // If heads, e; is in the sampling
phase

4 | if (RRUN')+e; € then

5 if e; € Core((RU N) + ¢;) then

6 ‘ if c¢; is heads then R <+ R' +¢; else R+ R+ e¢;

7 else

8 ‘ if ¢; is heads then N’ < N’ +e¢; else N < N +e¢;

9 end
10 end
11 end

Proof. Recall that, by Lemma 4, F is a k-growth system, where k& = max.cp Zj: eeS; k;. Let
€1, -..,emn be the elements of S sorted in decreasing order of weights. The idea is to split the elements
into sets R, N, R', and N’, where R U N’ = Greedy(Y) and RUN = Rel(Y), such that R’ =
Greedy(Y)NCore(Rel(Y)), R = Core(Rel(Y)) and N' = Greedy(Y)\ R/, N = Rel(Y)\Core(Rel(Y)).
Then, the proof of the lemma will follow from the following four inequalities:
! L
. EUN ] = & EIN,

E[|R|] +E[IN[] = SE(E[IR'l] + E[|N']]),

E[IN'[] < k (E[|RI] + E[INT]),

E[|N'|] < kK E[|R|] + (k — 1) E[|N]] if all components of F are matroids.

1

2

3

)
)
)
4)

(
(
(
(
To construct R, N, R’ and N’, we use Algorithm 3 which is an offline simulation algorithm.

Let R;, N;, R, and N be the sets R, N, R’ and N’, respectively, at the end of the i-th iteration,
where we set Ry = Ny = R, = N{, = 0. Note that ¥ has the same distribution as the set of edges e;
for which ¢; is heads, so we let Y be that set. Let E; .= {e1,...,e;} and Y; :=Y N E;. Also note
that R, U N/ = Greedy(Y;) and R; U N; = Rel(Y;) N E; = Rel(Y ) N E;, and that N;, R;, N] and R}
are pairwise disjoint. Let I; := R, U N/ and X; := R; U N;.

First, notice that, at each iteration, every e; that satisfies both (R' U N’) +e; € Z and
e; € Core((RUN) +e¢;) is added to R’ with probability p and to R with probability 1 — p. Similarly,

every e; that satisfies both (R'U N’) +¢; € Z and ¢; ¢ Core((RU N) + ¢;) is added to N’ with
probability p and to N with probability. 1 — p. From these, it follows that, for every i,

(1 —p) E[IR][] =pE[Ril] and (1—p)E[Nj|] =pE[Ni],

and thus (1) and (2) follow directly from the above. Next, we show that (3) holds as well. First, we
verify that R, N, R, and N’ are the sets as claimed.

Claim 1. For alli € [m], R,U N/ = Greedy(Y;).

Proof. Observe that, for £ <i, R, U N/ corresponds to the set of elements e, from E; which satisfied
(R,_{ UN,_,) +e; € T and for which the coin ¢, came up heads. In other words, R, U N/ is the
subset of Y; of elements e, which satisfied (R,_; UN;_,) + e, € Z, which is exactly Greedy(Y;). O
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Claim 2. For alli € [m]|, R;UN; = Rel(Y)N E;.

Proof. Similarly to the previous claim, for ¢ < i, R; U N; corresponds to the set of elements e, from
E; which satisfied (R,_; UN;_;) + e, € T and for which the coin ¢, came up tails, and thus, by the
definition of greedy-relevant elements, we have R; U N; = Rel(Y') N E;. O

Claim 3. For alli € [m], R; = Core(Rel(Y)) N E;.

Proof. Observe that, for £ < i, R; corresponds to the set of elements e; from F; which satisfied
(Ry_;UN,_y)+er €I, e € Core((Ry—1 UNy_1) + €¢) and for which the coin ¢, came up tails.
By Claim 2, this is equivalent to e; € Core((Rel(Y) N E;—1) + e¢) and, by Observation 1, to
e¢ ¢ Hull((Rel(Y) N Ey—1) + e¢) = Hull(Rel(Y)), where the equality follows from the fact that Fy_q
contains the elements of S with weight higher than that of e, and from the definition of Hull, as
well as from the fact that e, € Rel(Y). Thus, we get that e, € Core(Rel(Y)). Since e, € E;, the
claim follows. O

Claim 4. For all i € [m], R} = Greedy(Y;) N Core(Rel(Y)).

Proof. By Claim 1, we have that R, C Greedy(Y;). In particular, for ¢ < i, R. corresponds
to the set of elements ey from Greedy(Y;) which also satisfied e, € Core((Ry—1 U Ny—1) + eg).
By Claim 2, this is equivalent to e, € Core((Rel(Y) N Ey—1) + e¢) and, by Observation 1, to
er ¢ Hull((Rel(Y) N Ey—1) + e¢) = Hull(Rel(Y)), where the equality follows from the fact that Ey_;
contains the elements of S with weight higher than that of e, and from the definition of Hull, as well
as from the fact that ey € Rel(Y'). Thus, we get that e, € Core(Rel(Y)), and the claim follows. [

Next, we use Lemma 4 on the disjoint sets X; and I; to obtain sets Z; ; C I; for each j € [M]
with the bounds given by the lemma, and let Z; = UJ]\i1 Zijand Q; = (Li\ Xi)\ Z; =I1;\ Z;. We
show that N/ C Z; for all i.

To see this, notice that, Claims 1 and 4 and the definition of N’, we get that every element ey
with ¢ < i that enters N/ satisfies e; ¢ Core(Ny—1 U Ry_1 + €/). In particular, there exists an index
Jj such that e, € S; and e, ¢ Core;((Ny—1 URy—1)NS;), and thus there exists a circuit C' of the j-th
component such that e, € C N S;. Therefore, the set P; := C — ey C (Ny—1 U Ry_1) N S; satisfies
P; € Z; but Pj + e, ¢ Z;. This implies that e, ¢ Q; ; :== (I; \ Z; ;) NSj. Therefore, e, has to belong
to Z@j - Zi, and thus Nz/ - Zz

Now, we condition on the coins ¢, for ¢ < i and we apply the basis-growth axiom (kBG) to the
disjoint sets X; and I; € Z, yielding

M M
IN/| < | Zig| <D ki 1Xin S5l =" > kj =k|Xi| = k(IRi| + |Ni)).
j=1 j=1

eeX;j: GES]'

By unconditioning, we obtain
E[IV/1] < k (E[|Rs[] + E[IN3]]), (5)
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and thus (3) follows. For the particular case when all components are matroids and so F is a
k-matchoid, we use the following stronger inequality.

M M i M
NI < U Zas| < Sorms(Xin85) = 30D ri(Xen ) =5 (Xea 01 8))
j=1 j=1 t=1j=1

<Y D kDY (k=) =k|R|+ (k—1) N,
l=1 ey€Ry l=1 epeNy

where the last inequality follows from the fact that if e, € Ry, then for every matroid j in which
er € S, eg does not close any circuits in X,. Therefore, for all such ¢, we have r;(X,NS;) —7;(X,—1N
S;) = 1. Since ey participates in at most k& matroids, we have Zjle(rj(XgﬂSj) —rj(Xe—1NS;j)) < k.
On the other hand, if e, € Ny, then there must be an index j with e, € S; such that e, closes a
circuit in X,. Therefore, the sum above is at most £ — 1. Once again, by unconditioning, we obtain

E[INi[] < BE[|IR:] + (k — 1) E[[Ni], (6)

and thus (4) follows.
Putting it all together, we have

kE[|R;[] = E[|V]] — k E[|Ni]

> (ﬁp - k) EN
> (12 - x) (SRR + eIV - ERiD)

yielding

N2
el > (2 - k) O e+ el

G ‘]ff)“ ~2) (1R + EN]).

Thus, by Claims 1 and 3, we have

E [|Core(Rel(Y)) 1 B[] > 2= _;’2)’“)(1 =P |Greedy (V)]

Since this is true for every 4, applying linearity of expectation and the definition of the Core function
yields

—(1-pk)(1 -
E [w (Core(Rel(Y)))] > L= ;’2) A =P)e 1y (Greedy (V)]
For the particular case when all components are matroids, we use (6) instead of (5) to get

REIR) > EIN - (5~ 1) BN
> (12 - -0 Elvg

> (12 - - 0) (P + el - Elm).



After rearranging the terms, we get
l—p
E[[Ril] > (p— (1 —p)(k—1)) , (B[R] + E[IV]])-

Similarly as before, by Claims 1 and 3, we have

E [|Core(Rel(Y)) N E;[] > (- (1~ P)(f; ~D)A-p) [|Greedy(Y;)]] .

Since this is true for every 4, applying linearity of expectation and the definition of the Core function
yields

E [w (Core(Rel(Y)))] > 2= = p)(/; — DA =P)e 1y (Greedy (V)] 0

4.3 Free-Order Secretary Algorithm for Edge Arrivals

Next, we summarize the guarantees of our Core lemma with respect to w(OPT). Note that our
guarantee for k-matchoids is exactly the same as the previous guarantee for k-matroid intersection,
see Lemma 1.

Theorem 4. Let F = (S,Z) be a combination of systems {(Sj,Ij)}j]\il where each (S;,Z;) is a
kj-growth system. Let Core;(X) denote the set of critical elements with respect to X in (S;,Z;).
Also, let k = max.cg Zj: ces, kj, and Y =Y (p) be a random set that contains each element of S

independently with probability p for some p € [0,1]. Then, for p=+/1—1/(k + 1), we have

E [w (Core (Rel(Y)))] > <2 + % o1+ ;) w(OPT(S)) > (4;2 - 823) w(OPT(S)).

Furthermore, if all components are matroids, i.e., F is a k-matchoid, setting p =0 for k=1 and
p=1—1/(2k) for k > 2 yields

w(OPT(S)) if k=1,

E [w (Core (Rel(Y)))] > {4;2 w(OPT(S)) if k> 2.

Proof. Since the system (.5, Z) is a k-system the weighted-greedy algorithm yields a 1/k-approximation
with respect to the weight of OPT(S). Therefore,

E[w(OPT(S)) N Y] = Lw(OPT(S)).

E[w(Greedy(Y))] > ?

E[w(OPT(Y))] >

| =
x| =

Thus, by Lemma 5,

E [ (Core (Rel(v)))] > L= L=PMA=0) prg)).

pk
Optimizing p yields p = /1 — lerl and
1

E [w (Core (Rel(Y)))] > (2 + % _o/1+ k) w(OPT(S)).
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Now consider the case where all components are matroids. If £ = 1, then the components of F are
pairwise disjoint and thus the system is a direct sum of matroids. In this case, for p = 0 we have
Rel(Y) = S and, for all j € [M], Core;(S) = OPT(S). Thus,

E [w (Core (Rel(Y)))] = w (Core(S)) = w(OPT(S)).
If £ > 2, by Lemma 5,

(p—(1-p)k-1))(1-p)

E [w (Core (Rel(Y)))] > ’ w(OPT(9)).
Optimizing p yields p =1 — i and
E [w (Core (Rel(Y)))] > 4thw(opT(S)). 0

Finally, using Algorithm 2 and Theorem 3, we obtain our main result for the free-order secretary
problem on combinations of growth systems.

Theorem 5. Let F = (S,Z) be a combination of systems {(Sj,Ij)}inl where each (S;,Z;) is a

kj-growth system. Let k = maxeep ) ;. ces, kj- Then, for p= /1 — 1/(k+1), Algorithm 2 has a
utility-competitive ratio at least

N R AU B B
2 4k 2 k 16k2  32k3°

Furthermore, if all components are matroids, i.e. F is a k-matchoid, Algorithm 2 has a utility-

competitive ratio at least % if k=1, and at least ﬁ if k> 2.

5 The Agent-Arrival Setting

In this section, we turn our attention to the agent-arrival setting. As discussed in the introduction,
the Core lemma (Lemma 5) and thus our competitive ratio guarantees (Theorem 5) unfortunately
do not generalize directly from edge arrivals to this setting.

First, we need to “transfer” the constraints from the sets of agents and items to the set of edges.
Let F4 = (A, Ja) be a combination of systems {(A4;, J;) jﬂi“i such that, for all j € [Ma], (4;,J;)

Mp

is a kj-growth system. Furthermore, let Fg = (B, Lp) be a combination of systems {(Bj, Ej)}jzl

such that, for all j € [Mp], (By, L;) is an £;-growth system.

Before we “transfer” F4 and Fp from the set of agents and items, respectively, to the edges, we
need to take care of the matching constraint inherent in our model. This is easy to do however,
since k-growth systems are closed under parallel-extension (for a proof and more information see
Lemma 9). Therefore, for each system (A;, J;) for j € [M4] (resp. (Bj,L;) for j € [Mp]) and
each agent a € A (resp. item b € B) we create |d(a)| (resp. |0(b)|) many copies of a (resp. b).
Since all copies are parallel, we associate each edge in §(a) (resp. 6(b)) with a unique copy of a
(resp. b). Since (Aj, J;) (resp. (Bj, L;)) is a k;-growth (resp. ¢;-growth) system, by Lemma 9, the
resulting set system is still a kj-growth (resp. £;-growth) system. In addition, for every (A;, J;)
(resp. (Bj,Lj)), no feasible solution includes two edges incident to the same original agent a (resp.
item b), and is thus still a matching.
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Next, for each (A;,J;) € Fa, we create an independence system (E4,;,Z4 ) on the set of
edges. Then, the ground set F4 ; = §(A;) are the edges adjacent to the agents in A;. Next, for
aset X C Ej; of edges, let V4(X) = {a € A;|d(a) N X # 0} denote the set of agents incident
to some edge in X. Then, for the feasible sets, we have Ty ; = {X C E4 ;| Va(X) € J;}. Let
Farg = (E,Z4) denote the combination of {(E4 j,Za ;) jj\if‘i Similarly, for each (Bj,L;) € Fg,
we create an independence system (Ep ;,Zp ;) on the set of edges. Its ground set Ep ; = §(B5;)
are the edges adjacent to the items in B;j. Next, for a set X C Ep; of edges, let Vp(X) =
{be B;|§(b) N X # (0} denote the set of items incident to some edge in X. Then, for the feasible
sets, we have Zp ; = {X C Ep; | Vg(X) € L;}. Let Fpr = (E,Zp) denote the combination of
{(EB;,IB;) j\iBl Our global constraint F = (F,Z) on the set of edges can now be obtained as
a combination of the systems {(EAJ,IAJ)}J.A/L“} and {(EB7j,ZB7j)}jA/iBl. In other words, a set X of
edges is feasible for our global constraint if and only if X € T NZp.

Top-Relevant Edges. Similar to the edge-arrival setting, we begin by observing the edges adjacent
to a sampled fraction of agents. We then use this sampled set of agents to define a set of greedy-
relevant edges in subsequent phases of our algorithm.

Given a set Y C A of agents, we apply the weighted-greedy algorithm for the system (E,Z)
to the set of edges incident to Y to obtain a set Greedy(d(Y)) € Z. Recall that, by Definition 4,
for every set X of edges, we say that an edge e € E'\ X is greedy-relevant with respect to X if e
belongs to the output of the weighted-greedy algorithm on X + e. Then, for every agent a € A\ Y,
we associate the edge of highest weight in d(a) that is greedy-relevant with respect to 6(Y), call
it the top-relevant edge of a with respect to Y, and denote it by top-rel(a,Y). In other words,
top-rel(a,Y) = argmax {w(e) | e € 6(a), and e is greedy-relevant with respect to §(Y)}. If a has
no greedy-relevant edges, we write top-rel(a) = L.

In what follows, our aim is to show that, for a sufficiently large set of sampled agents Y, the
set of top-relevant edges with respect to Y which contains every top-relevant edge for every agent
a € A\Y, retains a decent fraction of the weight of a maximum-weight basis. To keep our notation
consistent with the Core lemma for edge arrivals, we abuse notation and use Rel(Y') to denote the
set of top-relevant edges with respect to Y, i.e.

Rel(Y) = {top-rel(a,Y) € E|la€ A\Y}.

5.1 The Core Lemma for Agent Arrivals

We are now ready to describe the main result of this section: our generalization of the Core Lemma
for combinations of growth systems, from the edge-arrival setting to the agent-arrival setting.

Lemma 6. Let Fap = (E,Z4) be a combination of {(Ea;,Za,;) jj\i“l, where each (Eaj,Zaj) is a

kj-growth system, and Fp.p = (E,Zg) be a combination of{(EB,j,IB,j)}in’i, where each (E j, 1B ;)
is an {j-growth system. Also, let F = (E,T) denote the intersection of Fa r and Fp g, let Core(X)

denote the set of critical elements with respect to X in F, i.e.,

MA MB
COI‘G(X) = m((X \ EAJ') U PCOI"ejA(X N EAJ')) N ﬂ((X \ EBJ) U PCorej’B(X N EBJ‘)),
Jj=1 Jj=1
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where PCore;j 4 is the primitive core function of (Eaj,Za;) and PCore;p is the primitive core
function of (Ep j,Zp ;). Let

k = max E k; + E ¢,
eeE | )
j:e€Fa ; j:e€EB ;

andY =Y (p) be a random set where every agent a € A is in'Y independently with probability p for

some p € [0,1]. Then,

(p— (1 —p)k)(1—p)
2

Furthermore, if all components are matroids, i.e. F is a k-matchoid, then

E [w (Core (Rel(Y)))] > E [w (Greedy(6(Y)))] .

E [w (Core (Rel(Y)))] > L= (1= p)<§ — DA =P) £y (Greedy(5(Y)))].

Proof. Let eq,...,en be the elements of E sorted in decreasing order of weights. We will define
disjoint sets R, N, R, and N’, where R' U N’ = Greedy(6(Y)) and RU N = Rel(Y), such
that R’ = Greedy(6(Y)) N Core(Rel(Y)), R = Core(Rel(Y)) and N’ = Greedy(6(Y)) \ R/, N =
Rel(Y) \ Core(Rel(Y)). To construct R, N, R' and N’, we use Algorithm 4 which is an offline
simulation algorithm. Notice that Algorithm 4 is very similar to Algorithm 3, with the exception
that, when we consider an edge e;, if we have already processed the agent incident to e;, this implies
that e; is not the top-relative edge of its incident agent, and we ignore it. In Line 17, we have
added the instruction “Do nothing” for clarity. Let us start by proving that the sets R, N, R’ and
N’ satisfy the claimed conditions.

Let R;, N;, R, N!, A; be the sets R, N, R', N’, A respectively, at the end of the i-th iteration,
where Ry = Ng = R, = Nj = Ag = 0. Let E; = {e1,...,e;} and also say that an edge ¢; is a
candidate for greedy if, on iteration i, R, ; UN/_; +e; € Z. Finally, let Y be the set of agents a € A
for which the coin ¢, is heads. Thus, we assume that they are the same set, and furthermore, we let
Y; = A;NY. Also note N;, R;, N! and R/ are pairwise disjoint. Let I; := R;UN/ and X; := R; UN;.

Claim 5. For alli € [m], R,UN] = Greedy(§(Y;)).

Proof. Consider the i-th step of our algorithm and let a = V4(e;). If e; is not a candidate for greedy
or if ¢, is tails, then in our algorithm Y; 11 = Y;, R, = R;_; and N/ = N/_; so the claim holds. Thus,
assume that e; is a candidate for greedy and that ¢, is heads. Note that in this case, it must be
that a ¢ A;_1; if not, there exists an index j < i such that e; is the first edge incident to a that is a
candidate for greedy. But since ¢, is heads, we have a € Y; C Y;_1 C A;_1, which is a contradiction.
ThllS, a ¢ Zi—l-

In that case, Y; = Y; 4+ a and since ¢; is a candidate for greedy,

Greedy(§(¥;)) = Greedy(3(¥i—1) U d(a)) = Greedy(3(Yi—1) + ;) = Greedy(3(¥i1)) + e,

since e; is the first edge incident to a that is a candidate for greedy. Indeed, all edges in §(a) with
higher weight than e; were discarded on previous iterations (i.e. they were not candidates for greedy)
and all edges in §(a) with lower weight than e; won’t enter Greedy(d(Y;)) for any j > 4, since e; is
has entered Greedy(d(Y;)) and Greedy cannot contain two edges incident to the same agent.
Furthermore, by the description of the algorithm, e; will enter either R’ or N’ so,

RIUN! =R, {UN]_| +e;. O
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Algorithm 4: Simulation algorithm for agent arrivals

1 RRN,R,N <0

2 A+ // The set of processed agents
3 for a € A do

// If heads, a is in the sampling phase
4 Toss a coin ¢, that is heads with probability p
5 end
6 fori=1 tom do
7 Let V4(e;) be the agent incident to e;
8 | if (RRUN')+e; €7 then
9 if Va(e;) ¢ A then
10 A+ A+ Vy(e)
11 if e; € Core((RUN) + ¢;) then
12 ‘ if cy,(c,) is head then R’ < R'+e; else R+ R+e;
13 else
14 ‘ if cy,(c,) s head then N’ <« N'+e; else N < N +e¢;
15 end
16 else
// e; wasn’t the first edge of V4(e;) that could enter Greedy(E;)
17 Do nothing
18 end
19 end
20 end

Claim 6. For alli € [m]|, R;UN; =Rel(Y)NE;.

Proof. Consider the i-th step of our algorithm and let a = V4(e;). First, note that if e; is not a
candidate for greedy or if ¢, is heads, then in our algorithm R; U N; = R;_1 U N;_1 so the claim
holds. Thus, assume that e; is a candidate for greedy and that ¢, is tails.

Now, if e; is the top-relevant edge of a with respect to Y, i.e. if e; = top-rel(a,Y), then we have
that e; € Rel(Y) N E; and also that a ¢ A;_1, and thus, by the description of the algorithm, e; will
enter either R or N so,

R;UN; = R; 1 UN; 1 +e¢;.

On the other hand, if e; # top-rel(a,Y), then e; ¢ Rel(Y) N E;. This, however, implies that there
exists a j < i such that e; = top-rel(a,Y) and, since e; has higher weight than e;, this means that
we have processed a earlier and a € A;_1. In either case, the claim holds. O

Claim 7. For alli € [m|, R; = Core(Rel(Y)) N E;.
Proof. We show both inclusions. Let e € R;. Then, there exists j < i such that e = ¢;, ¢; € R; and
ej € Core(Rj_1 UN;_1 +€j) = Core(R; U N;) = Core(Rel(Y) N Ej).

Since all the elements in Rel(Y') \ £} have weight smaller than that of e; we also get that e; €
Core(Rel(Y)), and therefore e; € Core(Rel(Y')) N E;.
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For the other direction, let e € Core(Rel(Y')) N E; C Rel(Y) N E;. This means that e = e; for
some j < ¢ and e; € Core(Rel(Y)) N Ej;. Since Core(Rel(Y)) C Rel(Y'), by Claim 6, we know that
ej € R; UN;. However, since e; € Core(Rel(Y')) N E; we also have that e; € Core(Rel(Y;—1)) N E;
and thus e; € Core((Rj—1 U Nj_1) + €;), which implies that e; € R; C R;. O

Claim 8. For alli € [m], R, = Greedy(d(Y;)) N Core(Rel(Y)).

Proof. By Claim 5, we have that R, C Greedy(d(Y;)). In particular, for j <1, R} corresponds to
the set of edges e; from Greedy(d(Y;)) which also satisfied e; € Core((Rj—1 U Nj_l) +¢;) and for
which the agent a incident to e; is not processed before step j. By Claim 6, the former is equivalent
to e; € Core((Rel(Y) N E;_1) + €;), which implies that e; € Core(Rel(Y) N E;) C Core(Rel(Y)).
For the latter, every edge e; € Greedy(4(Y;)) N Core(Rel(Y)) is the top-relevant edge of its incident
agent a and thus we have that V4(e;) ¢ A;_1. Thus, the claim holds. O

Now we will prove the following four inequalities about the sizes of the constructed sets.

. EUN'H E[lV]], (7)
7]+ E[N] > (g R + E[IN]), )
E[IN']] < k (E[|R]] + E[|N1)), (9)
E[|N'|]] < kE[|R]] + (k — 1) E[|V]] if all components of F are matroids. (10)

The proofs of (7) and (8) are a bit more subtle in the agent arrival case than in the edge arrival
case.

Claim 9. For alli € [m)],
(1-pE[|R|] = pE[|Ri|] and (1 —p)E[N;|] = p E[|N;]].

Proof. Fix an agent a. Observe that the first time an edge e; € d(a) is about to enter R’ U R (resp.
N'UN), the result of ¢, is used for the first time. If the coin is head, which happens with probability
p, then e; is added to R’ (resp. N’), otherwise, to R (resp. N). Since a € A;, no other edge e; € §(a)
with j > 4 will ever be about to enter R"U R (resp. N’ U N) and thus ¢, will not be used again. [

With (7), (8) and Claims 5, 6, 7 and 8 established, the rest of the proof follows exactly like the
proof of Lemma 5. We first use the fact that F is a k-growth system to establish (9) and (10), and
then we manipulate the four established inequalities in the same way as in Lemma 5 to obtain the
desired conclusion. O

We summarize the guarantees of our Core lemma with respect to w(OPT). Note that the
guarantees we obtain are identical to those of Theorem 4 for the edge-arrival setting.

Theorem 6. Let Fa.p = (E,Za) be a combination of {(Ea;,Ta,;) Ma " where each (Eaj,Tay) isa

=
kj-growth system, and Fp g = (E,Zg) be a combination of{(EBJ,IB,])}inBi, where each (EB j,1B ;)

is an ;-growth system. Also, let F = (E,Z) denote the combination of Fa g and Fp g, let Core(X)
denote the set of critical elements with respect to X in F, let Core(X) denote the set of critical
elements with respect to X in F, i.e.,

My Mp
Core(X) = (J((X \ Ea,) UPCore; (X NEa;)) N ()((X\ Ep,) UPCore; (X N Ep;)),
j=1 j=1
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where PCore;j 4 is the primitive core function of (Eaj,Za;) and PCore;p is the primitive core
function of (Ep;,Ipj), and let Y = Y(p) be a random set where every agent a € A is in'Y

independently with probability p for some p € [0,1]. Then, for p= /1 — k%q, we have

E [w (Core (Rel(Y)))] > (2 + % —2y/1+ i) w(OPT(E)) > <411€2 - 81;) w(OPT(E)).

Furthermore, if all components are matroids, i.e., F is a k-matchoid, setting p =0 for k=1 and
p=1—1/(2k) for k> 2 yields

w(OPT(E)) ifk=1,

E [w (Core (Rel(Y)))] >
[ (Rel(¥))} = {4;2 w(OPT(E)) if k> 2.

Proof. Since the system (F,Z) is a k-system the weighted-greedy algorithm yields a 1/k-approximation
with respect to the weight of OPT(E). Therefore,

Elw(Greedy(6(Y)))] = %E[w(OPT@(Y)))] > +Elw(OPT(E)) N4(Y)] = %w(OPT(E))-

e

Thus, by Lemma 6,

(p— (1 —p)k)(1—p)

E [w (Core (Rel(Y)))] > ol

w(OPT(E)).

Optimizing p yields p = /1 — T}rl and

E [w (Core (Rel(Y)))] > (2 + é o1+ ;) w(OPT(E)).

Now, consider the case where all components are matroids. If K = 1, then the components of F are
pairwise disjoint and thus the system is a direct sum of matroids, so it is itself a matroid. In this
case, for p = 0 we have Rel(Y) = E and, for all j € [M], Core;(F) = OPT(E). Thus,

E [w (Core (Rel(Y)))] = w (Core(E)) = w(OPT(E)).
If £ > 2, by Lemma 6,
(p—(A—p)(k—1))1—p)

E [w (Core (Rel(Y)))] > - w(OPT(F)).
Optimizing p yields p =1 — i and
E [w (Core (Rel(Y)))] > 4%QUJ(OPT(E)). 0

5.2 Order-Oblivious Core-Selecting Algorithms

As discussed previously, for edge arrivals, our guarantees follow directly by using the Core lemma in
conjunction with our black-box algorithm from Theorem 3. For agent arrivals, this is no longer the
case, for two main reasons.
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Problems with the Edge-Arrival Approach. First, suppose we try to repeat the approach
of our black-box algorithm from Theorem 3 for edge-arrival: split the remaining agents into two
parts S1 and Sz, use Sy to define a calling order, and then process Se in that order. Of course, we
cannot “call” individual edges and when we “call” an agent, we observe all their incident edges
simultaneously. The problem arises from the fact that we cannot “call” all edges incident to a single
item. This asymmetry implies that the order in which our algorithm should “call” the agents should
depend on the Hull of Fy4 g, i.e. the system from the agent side, to guarantee that any agent whose
top-relevant edge lies in the core of F4 g has a constant probability of being considered for selection.

However, even if we call the agents in the order specified by the Hull of F4 f, this still does not
resolve all our problems, as we still might not be able to select a decent fraction of the common core
of Fa,p and Fp g. This is because the edges that our algorithm selects (that are in the core of the
top-relevant edges of the sample with respect to F4 g) may be dependent in the item-side system
FB.E, since we do not have any guarantees that these edges are also in the core of the top-relevant
edges of the sample with respect to Fp g. Ideally, we would want to select edges that are also in
the item-side core, but the arrival order defined by the agent side does not ensure we pick them;
indeed, each time we select an edge outside the item core, we may block one or many later edges in
the item core.

To circumvent this issue, we focus our attention to systems Fp i on the item side that admit an
order-oblivious core-selecting algorithm; one that, after a uniformly random sample phase, ensures
that every element in the core of Fp g that was not sampled is selected with constant probability,
regardless of the arrival order of the elements in the sampling phase.

Definition 10. Given an independence system (S,Z) with hidden weights on the elements, we
say that an algorithm A, that uses r internal random bits and selects a set of elements ALG € Z
is (q, @) order-oblivious core-selecting (OOCS) if, for any X C S and any e € Core(X), if Y is a
random set where every element of X — e appears independently with probability ¢, then

Ey~x_e |[minPrle € ALG|e ¢ Y]| > «,
g T

where the minimum is taken over all orderings ¢ of the elements in X \ Y.
To better explain the above definition, we describe how an (g, «)-OOCS algorithm A, works.

1. Before the process begins, A, is presented with (S, 7).

2. An adversary is then allowed to delete an arbitrary set of elements from S and restrict the
true ground set of the process to an arbitrary X C S that is unknown to A,.

3. The process begins and A, observes a random subset Y C X, which we call the sample, that
includes each element of X independently with probability ¢q. A, learns the identities and
weights of the elements in Y, and does not select any of them.

4. A, then observes the remaining elements Y = X \ Y in an adversarial order that may depend
on the sample Y, but not on A,’s internal random bits 7.

5. Upon observing an element of Y, A, must immediately and irrevocably decide whether to
select it — adding it to ALG — subject to maintaining ALG € Z.

6. For any arbitrary restriction X C S, and conditioning only on the event that an element
e € Core(X) is not sampled, i.e. on e € Y, we require that the expected probability that A,
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selects e, regardless of the arrival order of the elements in Y in the selection phase, is at least
a. The expectation is over the random sample Y and the probability is over the algorithm’s
internal random bits 7.

Notice that Definition 10 is similar to the notion of a c-OPT competitive algorithm for random-
order matroid intersection secretary problems, introduced by [34], except that here we require
selecting core elements rather than elements in the optimal basis. However, it is actually a slightly
stronger requirement since an order-oblivious core-selecting algorithm has to work for any restriction
of the original system, without knowing the true ground set, and give the same guarantees. This
stronger requirement is necessary for our algorithm, in order to resolve our final obstacle, which
is that our agent-side sample does not induce a uniformly random sample of items or even of
item-adjacent edges. We describe our idea to circumvent this last problem in Section 5.3.

Given the above, one may wonder whether (¢, «)-OOCS algorithms exist for constant ¢ and
« for any feasibility constraints. As it turns out, several matroid classes have known algorithms
that are (g, a)-OOCS for constant ¢ and «, including uniform, partition, laminar and co-graphic
matroids. In addition, even though no order-oblivious core-selecting algorithm with good guarantees
is known for transversal matroids, graphic matroids and knapsack systems, we discuss in Section 5.4
how to transform them into systems that we can use for our algorithms with minimal losses in the
competitive ratio guarantee.

Setting aside briefly the requirement for the algorithm to work for arbitrary restrictions, notice
that, for matroids, every order-oblivious algorithm also selects elements in the core of any ground
set, since the elements of the core are exactly the elements of the optimal basis. However, this need
not be the case for general independence systems.

Next, we present an example of a simple (1/2,1/2)-O0CS algorithm for rank-1 matroids.

Example 1. Let (S,Z) be a uniform rank-1 matroid. The algorithm takes the sample, computes
the maximum-weight sampled element e* and, in the non-sampled phase, selects the first observed
element f with w(f) > w(e*). If the sample is empty, it selects the first non-sampled element
it observes. Notice that this algorithm does not require knowing |S| a priori. To see that it is
(1/2,1/2)-0O0CS, fix any X C S and let e € Core(X) = OPT(X) be the maximum-weight element
of X. For Y = S(q) and ¢ = 1/2, we condition on e ¢ Y. Feed YN X to the algorithm as the sample,
and then present X \ Y adversarially. Let es be the element in X with second-highest weight. With
probability 1/2, we have es € Y. In this case, w(e*) > w(ez) and the only element f that satisfies
w(f) > w(e*) is e, so e is selected in the second phase. Hence Pr [e € ALG |e € Y] > 1/2.

Next, we show that, for matroids, random-order constant-probability-competitive algorithms
can be transformed to order-oblivious core-selecting algorithms.

Observation 2. For any matroid M = (S,Z), if A is a (q,)-O0CS algorithm for M, there exists
a (1 — q)a-probability competitive algorithm for M, when the elements in S arrive in uniformly
random order

Proof. Let ALG denote the set of elements selected by A in the random-order setting, Y denote
the sample and Y = S\ Y. For every e € OPT,

Priec ALG]=Prle€ Y] Ey_. [Pr [eEALG}eEﬂ}
>(1—q)Ey_¢ [minPr[eEALG‘eG?,U]] > (1-gq)a. O
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With regard to our model, when the given item-side constraint is a combination of individual
systems, having an OOCS algorithm for the individual components suffices to obtain an OOCS
algorithm for the overall constraint, as the following lemma shows. Recall that, for a combination
of M systems, PCore; denotes the primitive core of the j-th individual system for j € [M], and by
Definition 8, for any X C S,

Core(X ((X'\ Sj) UPCore;(X NSy )).

||D§

Lemma 7. Let F = (S,Z) be a combination of systems {(S;,Z; )} _, where each (S;,T;) admits
a (gj,05)-00CS algorithm Aj. Let k = maxces|{j: e € 5;}| denote the mazimum number of
individual systems any element participates in and ¢* = mauxjj\/i1 qj. Then, for

¢g=1-(1-¢)" and o:=min H aj ,

there exists a (g, )-O0CS algorithm A for the combination (S,Z) of {(S;,Z; )}

Proof. For every element e and every j € [M], we independently draw t(e) ~ U[0,1] from the
uniform distribution in the interval [0,1]. Then, for every e € S we denote by js(e) the index
of the ¢-th individual system in the ordering (S1,Z1), (S2,Z2),...,(Swm,Zy) that e participates
in. For ¢ = 1,2,...,k, let ty(e) be equal to t;z(e). If e participates in h < k systems, we let
th+1(e),. .., tx(e) ~ U[0, 1] be drawn independently from all other random variables.

Consider the following sets:

Vie[M], Yi={eecSj|tj(e) <gq;}, and Y :={eeS|3lelk] st. tie) <qg*}.

Notice that for every j € [M] we have Y D Y}, since ¢; < ¢*. Furthermore, for every element e € S,
we have Prlee Y] =1- (1 — q*)lC = ¢, since even if e participates in less than k systems, we still
toss k coins for e and observe whether or not one of them is less than ¢* to decide whether e € Y or
not. Furthermore, the events (e € Y).cs are mutually independent by construction. Therefore, Y is
a truly random sample of .S with inclusion probability ¢. Similarly, the random sets (Yj);c[as] are
also mutually independent random variables since they depend on the result of different random
coins.

Let X C S denote the unknown arbitrary set that the adversary restricts our ground set to
before the process begins. Our algorithm will receive a sample in which each element of X is
independently selected with probability q. Notice that Y N X is a random set distributed exactly
according to the sample of our distribution, so in what follows we assume that this set is really
Y N X. Observe also that Y; is a random subset of S; such that for every element e € S;, we have
e € Y; independently with probability g;.

By the same logic as before, we have that ¥; N X is a random set distributed exactly according
to the sample expected by A;, restricted to X. Since Y; C Y for all j, our algorithm A proceeds as
follows:

1. A receives the set of sampled elements which, as discussed, is identically distributed to Y N X
so we assume it is really that set.
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. Next, A will create simulated realizations of the random variables tj(e) for £ =1,2,...,k and
e € X NY that are compatible with the definition of Y, so they are identically distributed. To
do that each element e € Y N X and j € [M], A will draw t(e) ~ U0, 1], as described above.
It will repeat this process until one of the ty(e)’s is less than ¢, for £ =1,2,..., k. When this
happens, the conditioning is correct and we assume that these are the correct draws of the
te(e)’s.

. Using the previous step, for every j € [M], A creates a simulated set by including every
element e € Y N X NS for which the random variable ¢,(e), for the value of £ that corresponds
to system (S;,Z;), is less than g;. The resulting set is now distributed identically to Y; N X,
so in what follows we assume that this set is really Y; N X.

. For every individual system (S;,Z;), A feeds Y; N X to A; as its sample. Since Y; N X is
identically distributed to the sample expected by A; restricted to X, we now start the second,
selection phase for every system j € [M].

. Let Y = X \ Y denote the set of elements in the selection phase. Assume that A observes
them in an adversarial arrival order .

. At every step i, A observes an element e;. For every j such that e; € S, A “feeds” e; to A;
in the selection phase. If all such A; accept e;, A accepts e; as well; otherwise it rejects e;.

. After all elements of Y end, A feeds all the elements of (Y \ Y;) NS, to Aj, for each j in
arbitrary order. Nothing is really selected here, but the process is done anyway so that each
Aj; receives all the elements from Y N S; on its selection phase. Then, the process ends.

We now show that A is (¢, a)-OOCS. Previously, we showed that the sample of A is distributed
identically to Y N X, which is a random subset of X where each element appears independently
with probability ¢. Fix an element e € Core(X) and let ALG denote the set selected by A. Next,
we show that

Eyvx_e {min Priee ALG|e ¢ Y]| > a.
g T

We have

Eyvox—e [min Prje € ALG |e ¢ Y]]

=Ey..x_e |minPr /\ Aj accepts e |e ¢ Y
g T
FE e€sS;

=Ey~x_e |minPr /\ Aj accepts e |Vjst. e€ S;, e¢Y;
g T
| j: e€S;

=E min H Pr[A; accepts e | e ¢ Y]

Yltfl\%(X*B)ﬁsl,...,YMq'{\/](Xfe)r‘IS]u o
j:e€S;

H EY1(1~1(X—€)V‘51,~~~,YMQM(X—e)ﬁsM [Inoln 1:7)~r [AJ accepts e | e ¢ YJ]

j:e€eS;
> H Q;j > min H a; = @,
e'eS
7 eeSj J: e’ESj
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where the second equality follows from the fact that, for any two systems (5;,Z;) and (Sj,Z;) for
which e € Sj and e ¢ Sy, it is irrelevant to A; whether or not e € Y}/, given that e ¢ Y}, the third
equality follows from the fact that the Y;’s are independent subsets of (X — e) NS}, conditioned on
e ¢ Y, the fourth equality follows from the independence of the decisions of all A;’s and the fifth
inequality follows from the fact that every A; is a (g;, j)-OOCS algorithm. O

5.3 Free-Order Secretary Algorithm for Agent Arrivals

As discussed earlier, we are now faced with our final obstacle. Even if we have order-oblivious
core-selecting algorithms for the constraints on the item side, they still require a uniformly random
sample to work. However, when we sample agents, we simultaneously observe all edges incident to
those agents. From the perspective of the item side, this set is neither a uniformly random sample of
item-adjacent edges, nor does it induce a uniformly random sample of the corresponding items. This
is easy to see: consider an extreme case where, originally, there are only two items, one connected to
all agents and the other connected only to a single agent. After our parallel extension construction
and our transfer of Fp from the items to the edges, every edge is connected to a unique agent and a
unique item, but we have many copies of the first item and only a single copy of the second one. So
a uniformly random sample of edges does not correspond to a uniformly random sample of items,
and thus no such sample can be used an an input to an order-oblivious core-selecting algorithm.

However, we are able to get around this issue by observing that, after our very first sampling
phase, each agent contributes at most one greedy-relevant edge — their top greedy-relevant edge,
if one exists — to the set of greedy-relevant edges. Now the idea is to do the following: after the
first sample, we restrict our ground set for the item side to the (unknown) set of top-relevant edges.
Let’s call this set X. Essentially, X forms the true ground set of our order-oblivious core-selecting
algorithms for the item side. Now, even though we cannot “call” items, we can perform another
sampling phase, independently from our first sampling phase, to ensure that the sampled top-relevant
edges in this second sampling phase forms a uniformly random subset of the new ground set X.

This insight motivates the stronger requirement we impose on order-oblivious core-selecting
algorithms: they must maintain their guarantees even if, at the beginning of the process, an arbitrary
and unknown subset of the ground set is removed (corresponding here to the edges that are not
top-relevant from the agent side). In other words, the algorithm must perform equally well under
any adversarial restriction of the ground set applied before the process begins.

We finally have all the ingredients we need to design an algorithm for the agent-arrival setting.
Note that, for the Hull function, we use the Hull of F4, the system on the agent side. Algorithm 5
receives as input the following;:

1. Fap = (F,Za) is the (edge-induced) agent-system.
2. Fpg = (E,Ip) is the (edge-induced) item-system.
3. Ais a (q,)-O0CS algorithm for Fp .

4. A parameter p.
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Algorithm 5: Agent-arrival Free-Order Secretary

Output: An independent set ALG

ALG + 0

P11 P

p2 < p1+(1—p1)g

D3 (1 + pz)/2

for each a € A do Choose t, independently and uniformly from (0, 1)

Y« {a|t, € (0,p1)}

So < {alta € [p1,p2)}

Sy < {alts € [p2,p3)}

Sz < {altq € [p3, 1]}

Observe (without accepting) all agents in Y U Sy U 51

unseen < S // The set of agents not yet revealed

Compute the edge-sets Ey = Rel(Y) N Sy and E; = Rel(Y) N S,

Run A on Fglgey) = (E,IB)|re(y) using Ep as the sample

Sort the elements of F; in decreasing order of weights as e1,...,en. Let ai,...,ay be the
respective agents such that e; is incident to a;

15 for j =1 to m do

© 0 N O Ok~ W Ny

e e e e
O N )

16 Let Q = unseen N Hull4({a1,...,a;})

17 for each a € Q in uniformly random order do

18 unseen < unseen — a // Reveal a
19 if top-rel(a,Y) = L then skip to the next a € @

20 f + top-rel(a,Y)

21 if w(f) > w(e;) and A selects f and ALG+f € Ty NZp then

22 ‘ ALG + ALG+f

23 end

24 end

25 end

26 () <+ unseen

27 for each a € Q in uniformly random order do

28 if top-rel(a,Y) = L then skip to the next a € Q
29 f < top-rel(a,Y)

30 if A selects f and ALG+f € Ty NZp then

31 ‘ ALG < ALG+f
32 end
33 end

34 return ALG

Theorem 7. Let Fap = (E,Za) be a combination of {(Eaj,Za ;) jj\i"i,
is a kj-growth system, and Fprp = (E,Zg) be a combination of {(Ep;,Zp ;) ;Vin where each
(EB,j,In,j) is an Lj-growth system. Also, let F = (E,T) denote the intersection of Fa g and Fp g

and A be a (q,a)-O0CS algorithm for Fp . Then, for p=+/1—1/(k+ 1), Algorithm 5 has a

where each (Eaj,Za ;)
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utility-competitive ratio at least

a(l—q) 1 1 1 1
W=Dy o144 1oy [ —— — ).
1 ( LR R G A e ioye:

Furthermore, if all components are matroids, i.e. if (E,Zo NZIg) is a k-matchoid with k; o = 1
and ljp =1 for every j and |{j: e € Ea;}| +|{j: e € Epj}| <k for everyec E, forp=1— ﬁ,
Algorithm 5 has a utility-competitive ratio at least

a(l —q)
16k2

Proof. First, it is clear that the algorithm returns an independent set since, before adding any edge
e to ALG, the algorithm checks whether ALG +e € Z. We first condition on a fixed realization of
the sampled set Y of agents. Let

Corecommon (Rel(Y')) = Cores(Rel(Y')) N Corep(Rel(Y)),

where
My Mp
Cores(Rel(Y)) = ﬂ Corey j(Rel(Y)) and Coreg(Rel(Y)) = ﬂ Corep_j(Rel(Y)),
j=1 i=1

where Corey ; (Corep; respectively) corresponds to the individual core function of the system
component (E4 j,Za ;) (resp. (Ep;,Zpj)). We show that each element in Corecommon(Rel(Y")) is
selected with probability at least o(1 — ¢)/4. Let e € Corecommon(Rel(Y')) C Rel(Y'). Condition
now on the event that e ¢ Sy (i.e. e € S; U Ss).
Recall that, e € Coreg(Rel(Y')), and observe that Ey = Rel(Y) NSy is a random subset of Rel(Y)
obtained in such a way that every element of Rel(Y') — e is in Ej independently with probability
b2 —p1

1—m

Since A is (¢, a)-OOCS for Fp g, if we “feed” Ej as the sample of A, we conclude that, for every
possible ordering o of Rel(Y') \ Ep, the event

&y : e is accepted by A when revealed,

which depends only on the internal random coins of A (recall that the random coins r of A are
independent from the internal arrival order of the elements), satisfies

Es,—e [F;r [€o] ‘ eé¢ 5’0} > a.

Here we are crucially using the fact that A is order-oblivious, since the order in which Rel(Y) \ Ep
is presented to A is chosen by the instructions of our algorithm. Next, condition on the realization
of Sop — e — in other words, S; — e and Sy — e are still undecided — and let Fy = Rel(Y) N Ss.

Let hy as the heaviest element in E; — e = Rel(Y') — e such that e is in the agent-hull of the
elements with a weight greater than k1 in E7 — e. In other words,

hy == argmax{w(h)|h € E; —e¢, and e € Hulls({g € E1 —e|w(g) > w(h)}}.
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Similarly for hg in Es — f:
he = argmax {w(h) |h € Ey — e, and e € Hull4({g € E2 — e | w(g) > w(h)}}.

If there are no such elements, we set hy = L and hy = L, respectively, with w(L) = 0.

Since, conditioned on Y and Sy — e, the sets (E; — e) and (E3 — e) are identically distributed,
we have that Prlw(h1) > w(hg)] = 1/2, regardless of whether one or both of hy and hg are L. Next,
we condition on the independent event that f € Sy, and conclude that both &; : w(h1) > w(ha) and
&y 1 e € Sy occur together with probability at least 1/4 given the previous conditions on Y and
So — e. So, in what follows, we also suppose that the two events & and &, occur.

Next, recall that, £y = Rel(Y) NS is ordered in decreasing order of weights as ey, ..., en.
Let j* be such that hy = ej« (where j* = m + 1 if hy = 1). By construction, e is revealed
by the algorithm precisely in iteration j*, when it first enters the set (). Furthermore, since
e € Coreg(Rel(Y)) = ﬂjj\i“l Corey j(Rel(Y')) we conclude, by the relations between Hull4 and Core4
and the monotonicity of Hulls that

f ¢ Hulla({g € Rel(Y) | w(g) > w(e)}) 2 Hull4a({g € Rel(Y) N S1 | w(g) > w(e)}).

Thus, w(e) > w(h1) > w(hz), so upon the arrival of e, we satisfy that w(e) > w(e;).

Let ALG’ denote the solution immediately before e is revealed and note that all elements in
ALG' are in Rel(Y) N Sy = E> and have weights larger than w(e;»). There are two possibilities.
First, if hy # L, since w(e;+) = w(h1) > w(hz), by the definition of hy and hs, we have

f ¢ Hulla({g € E2 | w(g) > w(e;+)}) 2 Hull4(ALG'),

where the last inequality follows by the monotonicity of Hull, and since all elements considered by
ALG’ for addition had weights larger than w(e;j»).
Second, if ho = L then, again by the monotonicity of Hull4, we have

f ¢ Hully(Ey) D Hully(ALG).

It follows that at the moment in which f is revealed, f ¢ Hull4(ALG’), and thus ALG' +f € Z4 by
the properties of Hull 4.

Finally, let A be the set of elements that A selects before e’s arrival. We know that ALG’ C A,
by the description of our algorithm. So, if A selects e upon arrival we would immediately have that
ALG’ +e € T4 NZpg since the set of elements that A selects are independent in Zg. Therefore, so
long as A selects e (i.e., as long as & occurs), e will be added to ALG. Putting it all together:

Prle € ALG | Y] =Prle ¢ So| - Es,—c Prje € ALG | Y, e ¢ So]

> 1:ZTESO_ePr[€0/\€1/\€2|Y,e§1f So]
=(1—q)Eg,—e[Pr[é|Y,e ¢ So]-Pri&1 ANE2|Y,e ¢ So]
> (1 - s [Priéo | Ve ¢ Sol) -

s all-q

- 4
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Since this holds for every realization of Y and every e € Corecommon(Rel(Y))), for the case of

general combinations of growth-systems and for p = /1 we conclude that

1
k+1°

a(l

E[w(ALG)] > 4_q)E [w(coreCommon(Rel(Y))]

> O‘(14_q> (2 - 2H+ ;) w(OPT(E)),

where the last inequality follows from Lemma 6.
Similarly, for the case of k-matchoids and p =1 — ﬁ, we conclude that
a(l —
(4q)E [w(Corecommon(Rel(Y))]
a(l—q)
16k2

where again the last inequality follows from Lemma 6. O

E[w(ALG)] >

> w(OPT(E)),

5.4 Remarks

It is worth noting that our free-order agent-arrival technique also applies, even when some item-side
components do not admit an order-oblivious core-selecting (OOCS) algorithm. In particular, by using
techniques similar to the reduce-and-solve construction of Feldman, Svensson, and Zenklusen [34]
for random-order matroid intersection, we can reduce those components to instances that do admit
an OOCS and then apply our method unchanged, incurring only the loss dictated by the reduction.
Without going into full generality, we briefly explain how to deal with some specific examples.

Graphic Matroids. We can reduce graphic matroids to a (random) partition matroid using an
idea of Korula and P4l [48]. Given a graph G = (V| E), before the process begins, let 7 denote a
uniformly random permutation of the vertices V. We create a partition matroid where every vertex
u is associated with a partition class. For any edge e = {u, v}, we place e in the partition class of u
if and only if 7(u) < 7(v). Now we can use an (1/2,1/2)-O0CS for the resulting partition matroid,
incurring only an extra loss of 1/2 by the reduction. What is actually done in the agent-arrival
model is to replace the graphic matroid component by the partition matroid just defined, even
before starting the agent-arrival algorithm (in particular, greedy, and the greedy-relevant edges are
computed with respect to this new combination of systems). Note that in the transformed instance
we are not enforcing selection from the core of the original graphic; instead, we select from the core
of this new partition matroid. Nevertheless, the expected weight guarantee remains sufficiently high
because the analysis applies to the greedy-relevant edges of this new combined system.
Interestingly, reductions like the one described above can be designed for any matroid class that
has the a-partition property [1], so long as the randomized partition can be created a priori, before
observing any elements. For example, this is the case for k-column sparse matroids (see [69]).

Transversal Matroids The idea is a little different here. Assume the item-side constraint is a
combination in which one component is a transversal matroid T. Represent T by its standard
bipartite presentation H = (L, R; Fy): the left vertices L are the original ground elements, the
right vertices R are auxiliaries, and a set F' C L is independent in 7" iff there exists a matching in
H that saturates F'.
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Duplication and partition intersection. For each e € L and each neighbor r € Ny (e), create a copy
er (think of it as the edge (e,7)), and let U = {e, : e € L, r € Ng(e)} be the new ground set.
Define two partition matroids on U:

Plett : at most one element from each block {e, : r € Ng(e)} for every e € L,

Pright : at most one element from each block {e, : e € L} for every r € R.

Then Piefy N Pright has independent sets exactly the matchings of H. Projecting an independent
set I C U to {e € L: 3r with e, € I} yields precisely the L-vertices that can be simultaneously
matched in H, i.e., an independent set of T'.

Incorporation to the agent-arrival algorithm. Similar to what we did for graphic matroids, we will
replace the component 7' on the original combination of systems by the two components Piey and
Pright- This is done at the very beginning, so both greedy and the greedy-relevant elements are
computed with respect to the new combinations. Whenever the agent-arrival algorithm decides to
reveal an agent that owns a copy of an original element e € L of the transversal in its neighborhood,
actually all of its copies {e, : 7 € Ng(e)} are simultaneously revealed (the weight that is revealed is
actually w(e) on all of them; break ties arbitrarily to maintain injectivity if needed.) Accepting
any copy e, is interpreted as accepting e. In the transformed system we run an order-oblivious
core-selecting (OOCS) procedure, since P is an intersection of partition matroids.

Matchoid parameter. This reduction is not preserving for the growth parameter: one original
matroidal component is replaced by two. In particular, if the original item-side constraint was
a k-matchoid, the transformed constraint is a (k + 1)-matchoid, so the competitive ratio by this
reduction we obtain is slightly decreased..

Core and guarantee. Similar to the graphic case in the transformed instance, we are not enforcing
selection from the core of the original transversal matroid 7", but from the core of the new components
Piett N Pright- This is still fine for the analysis to work.

Knapsack with integer sizes. We give a small construction that transforms knapsack constraints
into a hypergraph matching, for the particular case in which all item sizes are integer numbers
between 1 and k.

Essentially, for a knapsack of total capacity C' and n elements, we create a hypergraph H = (V, E)
with C' + n vertices. The first C vertices correspond to unit slots in the knapsack, while the
remaining n vertices each correspond to an original element of the knapsack constraint. Order the
elements of the original knapsack constraint as eq,...,e,. For every e; with size s; € N, we create
C — s; + 1 hyperedges. Each “copy” hyperedge e; ; (for j =1,...,C — s; + 1) contains the vertices
{j,--yj+8 —1} U{C +i}. The last vertex ensures we pick at most one copy of e;; the chosen
copy encodes the position of e; in the knapsack, ensuring that the final set of selected hyperedges is
feasible. Furthermore, this hypergraph matching constraint is represented by a (k + 1)-matchoid
in which each component is a rank-1 uniform matroid, and each copy hyperedge participates in at
most k + 1 of these matroids.

We replace the knapsack constraint with this (k + 1)-matchoid (each piece of this matchoid
admits an OOCS algorithm since it is uniform), and by using the same idea described for transversals,
we can effectively replace the original elements with their copies in the agent-arrival model. If
instead of having sizes 1 to k we have a k-ratio-bounded knapsack (so the sizes range between some
base size m and k - m), and if the capacity of the knapsack is sufficiently large compared to m, then
we can still carry out a similar construction with only a slight loss in the approximation factor by
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choosing a sufficiently small € and rounding up each item size to the nearest integer multiple of me.
By standard techniques, every independent set feasible for the original constraint contains a subset
that is feasible in the new, rounded knapsack with almost the same total weight, so we use this
rounded system instead and apply the previous construction. This incurs a constant blow-up (on
the order of 1/¢) in the number of matroids used to describe the system.

6 Multiple Item Selection

Our techniques for the free-order agent-arrival model on bipartite graphs require that each agent
selects at most one incident edge. In this section, we consider a different extension of the bipartite-
graph model, which we call the unrelated-agent model.

Definition 11 (Unrelated-agent model). Let G = (AU B, E) be a bipartite graph, and for a € A
let §(a) C E denote the set of edges incident to a. Each agent a € A has an independence system
Fa = (8(a),Z,) over its incident edges. There is also an independence system Fp = (B,Zp) over
the set of items B. A subset F' C F of edges is feasible if:

(i) for every agent a, the set of edges of F' incident to a is independent, i.e., §(a) N F € Z,,
(ii) the set of assigned items is independent, i.e., {be€ B: §(b)NF # 0} € Ip.

We say that agents are unrelated in this model because each has its own independence system,
and there is no global system that constrains whether one agent can select elements based on the
actions of another. Our goal is to study the agent-arrival model in this setting, namely, upon arrival,
each agent a reveals the weights of all edges incident to it, and we must irrevocably select a subset
F, € 6(a) such that the union J, 4 F, is feasible.

Although, in general, the entire problem can be encoded within the item system by treating
each edge as an item — so that conditions (i) and (ii) are captured by a single system (B,Zp) — our
purpose is to understand what can be achieved in the agent-arrival setting when the item system is
simple. A canonical example is the case where the only constraint is that each item is assigned to
at most one agent (i.e., the item system is a partition matroid).

This setting can be used to model problems such as the secretary problem with groups proposed
by Korula and P&l [48]. In this problem, there is a unique independence system (B,Zp) whose
ground set is partitioned (arbitrarily) into a known number m of groups By,..., B, (but the
partition is unknown). Once the groups have been formed, the groups arrive in random order, and
upon arrival, the identity and weight of the elements are revealed and the algorithm must select a
subset from each arriving group in such a way that the total set of selected elements is feasible for
the system, and it has maximum weight. We note that this model falls within our framework, as it
can be represented by a bipartite graph between a set A = {ay,...,a;} of m agents and the set B
of items. The adversary will assign each group B; to agent a; by assigning w({a;,z}) = w(zx) for all
x € B; and w({a;,z}) = 0 (or an infinitesimal small number) if x ¢ B;.

6.1 The Case of Hypergraph Matching

Consider the special case of the unrelated-agent model in which the item constraint is a hypergraph
matching constraint. This is, the items are hyperedges of an auxiliary hypergraph H, and the
set of items (i.e., hyperedges) that can be used simultaneously must form a matching in H. In
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the combinatorial assignment problem with agent arrivals, we are given a bipartite hypergraph
H = (AUR, E) where each hyperedge e contains exactly one node A(e) in A and a subset R(e) C R
of nodes in R, so we can always denote them as e = (a, R(e)), with a = A(e) € A. The set A
is regarded as the agents. And the nodes in R are the goods. Each agent a € A owns a private
independence system F, = (d(a),Z,) over the set d(a) of hyperedges that contain a. Also, there is
a global function w: E — Ry where w(e) = w(a, R(e)) is interpreted as the weight that agent a
assigns to R(e). We say that a set of hyperedges F' C FE is feasible if:

(i) foralla € A, d(a) N F € Zy;
(ii) every individual node of b is in at most one hyperedge of F, i.e. for allb € R, |§(b) N F| < 1.

An interpretation of this model comes from the combinatorial auction setting, where each hyperedge
can be understood as a bundle of goods. Each agent a has a hidden valuation w(e) = w(a, R(e))
over bundles e of goods, and each agent a can receive not just one bundle, but a collection of them,
under the conditions that the assignment to a must be feasible for the private independence system
of agent a, i.e., (6(a),Z,), and each node in R must be in at most one of the assigned hyperedges F'.
The simplest example is when the hyperedges are actually edges: i.e., they consist of a single agent
and a single item. In this example, upon arrival, agent a would reveal the value of all edges in §(a),
and then an algorithm must immediately assign a subset of it to a in such a way that this subset
is feasible for a’s own independence system, and each item can be assigned to at most one edge.
When the bundles have size at most k, we call this setting the k-combinatorial assignment with
agent arrivals.

Relation to Previous Bipartite Models. We remark that the combinatorial assignment problem
with agent arrivals is a direct extension of the bipartite vertex-at-a-time hypergraph matching
problem studied by Korula and P&l [48] and Kesselheim, Radke, Tonnis, and Vocking [42], and the
combinatorial assignment model by Marinkovic, Soto and Verdugo [57]. The main difference is that,
rather than limiting each agent to a single hyperedge, agent a may receive any subset of d(a) that is
feasible in F,. In the prior works, this corresponds to the special case where each F, is the rank-1
uniform matroid on d6(a).

The Algorithm. Each agent selects a random arrival time uniformly and independently on the
interval (0, 1) and uses it to represent the random-order arrival of the agents. We also assume that,
for any set of agents A’, we can compute the optimum allocation OPT(A’), i.e., the maximum weight
feasible set of hyperedges in the hypergraph induced by A’ and R. We need some notation. For
any set S C A of agents, any agent a € S, let F(S,a) = OPT(S)Nd(a) be the set of hyperedges of
OPT(S) that are incident to a, and let N (S, a) = U,.cp(s,4) F2(€) e the goods in R that are assigned
to a. For every t > p, let X (S, a,t) be the subset of goods in N(S,a) that are still unassigned by
the algorithm by time ¢ (or more precisely, immediately before time t).
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Algorithm 6: BAsic ONLINE ASSIGNMENT ALGORITHM

1 ALG «+ 0; Ignore all agents arriving before time p € (0,1)

2 for each agent a arriving at time t, € [p, 1], in arrival order do

3 Let A, be the set of agents that have arrived up to time ¢,

4 Compute OPT(A4,), and let F'(a) = OPT(A4,) N d(a) denote the edges of OPT(A,)
incident to the new agent a.

5 Let F'(a) = {e € F(a): Vf € ALG, R(e) N R(f) = 0}, i.e., the subset of edges e of F(a)

such that R(e) is composed of goods that have not been assigned by the algorithm yet.

6 Assign to a all edges in F'(a), that is: ALG < ALGUF’(a)

7 end

8 return ALG.

Lemma 8. Let S C A be a fized set of at least k + 1 agents. Let i = |S| and suppose that S is
the set of the first i arriving agents on the algorithm. Let a be the last arriving agent in S, and
t = t(a) > p be its time of arrival. Let also D € F(S,a) be a subset of goods among the ones
assigned to a in OPT(S), with |D| < k. Then the probability that D C X (S, a,t), i.e., that all goods
in D are unassigned at time t, is at least (p/t)".

We defer the proof of this lemma and show how to get the following theorem.

Theorem 8. ALG is fpl (p/t)*dt-competitive for the k-combinatorial assignment with agent arrivals.
By choosing appropriate values of p for each k, the competitive ratio is 1/e for k=1 and

/(b 1 In(k) In?(k)
k/(h=1) _ 2
K - o (U

> fork >2

Proof. Let n be the number of agents. Let ALG; be the contribution to the solution at the
i-th arrival, that is, if F C FE is the final assignment and a is the i-th arriving agent, then
ALG; = Zeg&(a)mALG w(e). For any set S of agents, let £(S) be the last one to arrive inside S in
the random order. Let A; be the set of the first ¢ agents to arrive and let g;(¢) be the probability
density function for the arrival time of the i-th agent among n uniformly arriving agents. Then:

E[ALG] = Z Z/ IALG: [A; = S, a = U(S), t(a) = t]gi(t) dt

%ICA aES
Z Z/ [ALG; [A; = S, a = £(S5), t(a) = t]g(t) dt, (11)
fS‘|CA aES

where the last equality holds since, before time p, we do not select any hyperedge. Note that for
fixed S, a = ¢(S) and t = t(a), Lemma 8 implies that

E[ALG; |A; = S, a =((S),t(a) =t] = > w(e)Pr(R(e) C X(S,a,t))
e€F(S,a)

> 3 w(e)p/t,

e€F(S,a)
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since for all e, we assumed that |R(e)| < k. The assumption that S has at least k + 1 agents can be
easily satisfied by adding to our original instance enough dummy agents without incident edges.
Therefore, summing (11) over all 7, and changing the summation order, we have

n

S E[ALGH] /p/t Z% ZZ S w

i=1 SCA a€S ecF(S,a)
|S|=1

_ /1 (p/1) Z ai(t T) 3" w(OPT(S)) dt
p 7

SCA
|S=i

1 n .
= [y “Wes. gy lwioPTis)] @t

i=1

where the expectation is taken over all sets S of exactly i agents (uniformly). Now observe that:

1

E(s: |5|=i} [w(OPT(S))] > E(s. |5)=¢} [w(OPT(A) N4(S5))] > — - w(OPT(4)),

n

since each agent in A is included in S with probability i/n, and the restriction OPT(A) N4d(S) is a
feasible solution over S. Putting it all together:

w(ALG)] Z E[ALG,]

- / 1<p/t>’“ S ¢ O L opr(a))
p i=1

1
— w(OPT(4) [ (p/t) Zqz

/1 {w(OP (A)) - plngl/p) if k=1,
P

k _
/7= L oPT(4)) - bt itE> 1.

= w(OPT(A))

For k =1, we set p = 1/e, to obtain a competitive ratio of pln(1/p) = 1/e. For k > 2, we set
p = k=% =1 {6 obtain a competitive ratio of k—*/(k=1) O

We now show the proof of the missing lemma above.

Proof of Lemma 8. Let ¢ be the number of agents of S arriving before time p. Label all the arriving
times of the agents increasingly as 7 < -+ < 7 < p < Tpy1 < Tyyo < -+ < -1 < t = 7;. For
convenience, denote a? to the ¢-th arriving agent so that a’ = a and let Ay = {a',...,a%} be the
set of the ¢ first agents. By the statement of the lemma, A,_; = S\ {a}. Recall that D C F(S,a)
is a fixed set of items.

Note that the optimum assignment OPT(A;_1) at time 7;_; assigns each good b € D to at most
one agent in A;_1; it follows that the number of agents that could get a good from D at time ¢ — 1
is at most |D| < k. Since the identity of the agent arriving at time 7;_; is chosen uniformly at
random from the set A;_1, with probability at least (1 —k/(i — 1))+ = (i—1—k)4+/(i — 1), agent
a*~! does not receive any good from D at time 7;_;. Here x, = max(z,0) is the positive part of
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z. Now, suppose that we have already revealed the identities of ag41,a4+42,...,0i—1,a; = a and
that none of them received goods from B. Then A, = S\ {ag+1,...,ai—1,a;}. Once again, we note
that the optimum assignment at time 7, assigns each good b € D to at most one agent in A, and
that the identity of agent a4 is uniformly chosen at random from A,. Then, with probability at
least (1 — k/q)+ = (¢ — k)+/q, agent a4 does not receive any good from D. By repeating this until
q ={+ 1, we conclude that

(i—1—-k)+ (1—2—k)4 (L+1—-Fk)y

Pr|D e X(S,a,t) |/ e T, t =T > .
I‘[ € (7a7)’ s T0+1,5 y Ti—1, T’L]_ i_1 i_9 g—i—l

Therefore,

Er(*
Pr[D € X(S,a,t)|t =7 = l[gkl)],
(%)
where the expectation is over the random variable ¢ that counts the number of the agents in S\ {a}
that arrive in the interval [0, p]. Since all agents in S\ {a} chose their arrival time in [0, ¢| uniformly

at random, we get ¢ ~ Bin(i— 1, p/t), and therefore, using known properties of the factorial moments
of binomial variables we get Pr[D € X (S, a,t)|t = ;] = (p/t)*. O

Extensions. We note that the same analysis used for the hypergraph matching case can be
applied to more general independence systems on the item side. In fact, following Marinkovic,
Soto and Verdugo [57], we can replace the hypergraph matching system (which is the intersection
of k unitary partition matroids) by the combination of matroids admitting a so-called directed
certifier [57, Definition 3]. Our approach can also be extended to the case of more general weight
functions for the agents, e.g., fractionally subadditive.’ Namely, for each agent a, consider the
function v, (F) = maxscr ez, Y.y w(e), that is, if I is a set of edges incident to a, then v, (F)
is the maximum weight of a subset of F' that can be assigned to a. For each a, the function
v, is fractionally subadditive. In this variant, the combinatorial assignment problem with agent
arrival becomes an online combinatorial allocation problem with XOS valuations over hyperedges.
Kesselheim, Radke, Tonnis, and Vécking [42] gave an algorithm that works for the specific problem
of XOS valuations when all R(e) are singletons, achieving a 1/e competitive algorithm.” Our
approach applies to the case of fractionally subadditive weights over hyperedges as well, generalizing
the result by Kesselheim et al [42].

7 Properties of the k-systems Hierarchy

The study of k-systems and their subclasses plays a key role in understanding the structural and
algorithmic limits of independence systems beyond matroids. These classes capture different levels
of combinatorial flexibility and have been useful for understanding the trade-offs between structural
generality and algorithmic tractability in submodular optimization, secretary problems, and related

Sv is fractionally subadditive (a.k.a., XOS) if there is a fixed family ws, ..., wy of additive weight functions over R
such that for all S we have v(S) = max; ¢ wi(S).
"In [42] the algorithm is stated for submodular valuations, but the proof also works for XOS valuations.
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areas. The introduction of k-growth systems offers a promising new class that likely refines this
hierarchy, although its exact relation to previously studied systems remains to be fully understood.
We believe that the proposed class is of combinatorial interest on its own, and one of the implicit
goals of this paper is to initiate its study.

In this section, we give an overview of k-systems, present examples of k-growth systems, and
explain how k-growth systems fit in the hierarchy. We also study the closure properties of several
subclasses of k-systems under fundamental operations such as restriction and contraction. In
particular, we give a characterization of k-extendible systems in terms of contractions of k-systems.

7.1 Overview of Existing Classes

Matroids are characterized by their defining exchange properties. Since their introduction, several
related classes have been proposed, with each subsequent class assuming a weaker form of these
properties. We give a brief overview of the most important subclasses of k-systems.

Definition 12 (k-matroid intersection). An independence system (S,Z) is a k-matroid intersection
system if there exist matroids M; = (S,Z;) for i € [k], such that

I={FCS&:Fel forallic [k}

Definition 13 (k-matchoid). An independence system (S,7) is a k-matchoid if there exist matroids
M, = (S;,Z;) for i € [N], where the ground sets S; may intersect, such that S = Uf\;l S;, each
e € S belongs to at most k of the ground sets (S;)Y ;, and

I={FCS:FnS;eT foralliec[N]}.

Definition 14 (k-circuit bounded). An independence system (S,Z) is k-circuit bounded if for every
independent I € 7 and every e € I, I + e contains at most k distinct circuits.

Definition 15 (k-extendible). An independence system (.S, Z) is k-extendible if, for every A C B € T
and every e € S\ B, we have the following k-extension property:

A+eecl = 3Z C B\ A,such that |[Z| <k and (B+e)\Z €T

Definition 16 (k-system). An independence system F = (S,Z) is a k-system if, for every subset
X C S and every pair P, Q of bases of X, we have |P| < k |Q)|.

The following hierarchy of independence systems for k£ € N is well-known, see e.g. [31].
k-matroid intersection C k-matchoid C k-circuit bounded C k-extendible C k-system.

It is easy to see that 1-systems coincide with matroids, and therefore, for k = 1, all classes are the
same. For k > 2, however, all containments in the hierarchy are known to be strict. Furthermore,
as Proposition 1 states, an independence system is a k-system if and only if, for every nonnegative
weight function, the weighted greedy algorithm returns a 1/k-approximation to the maximum-weight
basis.
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7.2 Growth Systems: A New Class of Independence Systems

Recall the definition of k-growth systems, presented here again for convenience.

Definition 9 (k-growth system). Let F = (S,Z) be an independence system and k be a positive
integer. We say that F is a k-growth system if it satisfies the following k-Basis-Growth (kBG)
axiom.

(kBG) VX C S, VI €Z, there exists a partition (Q, Z) of I\ X with |Z] < k|X \ I| such that
(1) for every basis P of X, PUQ € T.

It is easy to see that condition (x1) can be replaced by any of the following equivalent ones.

(x2) For every independent set P € Z with P C X, PUQ € Z.
(*3) @ is a subset of every basis of X U Q.
(x4) For every circuit C, if C C X U@ then C C X.

We remark that to check whether an independence system satisfies the (kBG) axiom, it is enough
to check it for all sets X and bases B of the independence system.

Relations to the k-systems hierarchy. Next, we describe how k-growth systems are related to
other classes in the hierarchy of independence systems.

Theorem 9. The I1-growth systems are precisely matroids. Moreover, in this case the set Z
guaranteed by the axiom can be chosen to satisfy the stronger bound |Z| < r(X) —|X NI|.

Proof. Let F = (S,Z) be a 1-growth system, and let J and I be two independent sets with |J| < |I].
Apply the 1-growth axiom (1BG) with X = J to obtain a partition (@, Z) of I\ J such that
|Z| < |J\I|. Since |I| > |J|, we have |I\ J| > |J\ I|, hence |Z] < |[I\ J| and so Q = (I\ J)\ Z # 0.
For any e € @, the axiom guarantees J + e € Z. Thus the augmentation property holds, and F is a
matroid.

Now let M = (S,Z) be a matroid, and let X C S and I € Z. Take @) to be any basis of I \ X
in the contracted matroid M/X. Then, by the properties of contraction, we know that for every
basis P of X in M, the set P U @ forms a basis of X U I, and therefore is independent. Define
Z =(I\(XUQ)). Then (Q, Z) is a partition of I \ X, and it only remains to show that |Z] < | X\ I|.
To see this, let R be a basis of X \ I in M/(X NI). Since X NI € Z, this means that RU (X NI)
is a basis of X in M. By the properties of @) discussed above, RU (X NI)UQ is a basis of X U in
M. Moreover, since I € Z, it follows that |[RU(XNI)UQ| > |I| = |X NI|+|Q|+|Z|. In particular,
|Z| = |R|=r(X)—|XNI<|X|-|XnNI|=|X)\I|, as needed. O

As it turns out, k-growth systems fit nicely in the hierarchy between k-matchoids and k-extendible
systems, for any k € N. In fact, for the former containment, we show a stronger result.

M

Lemma 4. Let 7 = (5,Z) be a combination of systems {(5},Z;)},Z,,

kj-growth system. Then, F is a k-growth system, where

where each (5;,Z;) is a

k = max k;.
eeS |
j:e€S;
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In particular, for each X C S and I € Z, there exists a collection of sets Z; C (I \ X) N S; such
that, for every basis P of X, we have P U ((1\ X) \ U]A/i1 Zj) € I, and, for all j € [M],

Z~‘<{’U((X\ nns;)—|(XnIl)ns;|l ifk; =1,
7T kDS if by > 1,

where r; denotes the rank function of the j-th component (S;,Z;). In particular, | Z;| < k;|(X\1)NS;|
for j € [M], since r; is a matroid rank function when k; = 1.

Proof. Let X C S and I € Z. Fix a j € [M]. Since (S;,Z;) is a k; growth system, there exist sets

Z; CI\X)nSjand Q; = (L \ X)NS;)\ Z; with |Z;] < k;|(X \ I) N S;)| such that for every

independent set P; of X NS; in (S;,7;), we have P; UQ; € Z;. If k; = 1, the j-th component is a

matroid and the same holds with the stronger bound |Z;| < r;((X \ 1) N S;) — (X NS;) NI
Now let

Z = UZJ, (I\X)\Z

For every P € 7 and j € [M], we have (PN .S;)UQ; € Z;. Since @ N S; C Qj, it follows that
(PUQQ)NS; = (PNS;)u(@nS;) C (PNS;)UQ;. Therefore, (PUQ)NS; € Z;, and thus we
have PUQ@ € 1.

Finally, note that

N N N
1Z| = U <Y UZI <D KIXNDNS) = > > ky <KX\,
j=1 j=1 j=1

ecX\Ij: e€S;
so the system is a k-growth system. O
Theorem 10. The following statements hold for any k € N.

(a) Every k-growth system is k-extendible.

(b) Every k-matchoid is a k-growth system.
Proof. For (a), let (S,Z) be a k-growth system, and let A C B€Z, e € S\ B such that A+ e € 7.
Applying (kBG) to X = A+ e and I = B we deduce that there exists aset Z C B\ (A+e¢e) = B\ A
with |Z] <k [(A+e)\ B| =k such that (A+e)U(B\(AUZ))=(B\Z)+eecZ Thus, (S,7)
satisfies the k-extension property.

Finally, notice that (b) follows directly from Lemma 4 since, for matroids, we have k; = 1 for all
Jj € [M]. O

Next, we show that the latter containment is strict; in fact, we separate k-growth systems not
only from k-matchoids but also from the larger class of k-circuit bounded systems.

Theorem 11. For any k > 2, there exist k-growth systems that are not k-circuit bounded.

Proof. Let S = {ep,e€1,...,er+1} and consider the family of bases B = {{eg,e;}:i € [k+ 1]} U
{{e1,...,ext1}}. Let F = (S,Z) where T = {F C B| B € B}.

Claim 10. F is a k-growth system.
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Proof. By our previous observation, it suffices to check condition (kBG) for all sets X and bases B
of the independence system. If e € B, then |B| = 2, and the k-growth condition (kBG) is trivially
satisfied for any X. For B = {e1,...,ex11}, X \ B # 0 only holds if X \ B = {ep}. In this case,
regardless of B\ X, we can always find a Z with |Z] < k such that |B\ (X U Z)| < 1, in which case
adding it to any basis of X will form an independent set. O

Claim 11. F is not ((kgl) - 1)—circu7jt bounded.

Proof. For I = {ej,...,exy1}, the set I + ey contains (kgl) circuits of the form {eg,e;,e;} for

distinct 4,5 € [k + 1]. O

The theorem follows by Claims 10 and 11. O

7.3 Examples of k-growth Systems

Theorem 10 shows that k-growth systems lie between k-matchoids and k-extendible systems in the
k-system hierarchy, while Theorem 11 shows that they do not form a subclass of k-circuit-bounded
systems. However, the precise relationship between the proposed class and the previous ones remains
an interesting open problem. To gain a better understanding of the class, we next present some
fundamental examples.

Knapsack systems. We also show that the class of k-growth systems includes specific classes of
knapsack systems. Let S be a finite set and s: S — R>(¢ be a nonnegative function. The associated
knapsack system is (S,Z) where T = {I C S: ) .;s(e) < 1}. We say that the knapsack system
has ratio bound p if max.cp s(e) = p minecp s(e).

Theorem 12. Every knapsack system (S,Z) with ratio bound p is a [p]|-growth system.

Proof. Let X C S and I € Z. Let o = mineecp s(e), f = maxeep s(e) and set k = [B/a]. We
distinguish two cases.

Case 1.If s(X \ I) > s(I \ X), then we have
alI\ X| <s(I\X)<s(X\I)<p|X\I|,
yielding [T\ X| < k|X \ I|. Then we can set Z := I\ X and Q := 0.

Case 2.If s(X \I) < s(I'\ X), then s(X) < s(I) <1 and therefore X € Z. If [T \ X| < k| X \ I|,
then we can simply set Z := I\ X and @ := (. Otherwise |I\ X| > k|X \ I|, and set Z to be any
set of the largest k| X \ I| elements of I \ X, and Q := I\ (X U Z). Note that the size bound for Z

is attained and o

s(2) > olZ] = okl X \ 1| 2

ks(X\1)>s(X\1I).
Therefore
sS(XUuQ)=s(X\I)+s(XNI)+s(Q)<s(Z)+s(XNI)+s(Q)=s() <1,

thus X U@ € 7. O
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Stable Sets of Intersection Graphs. Let D be a ground set and V C 2P be a family of subsets;
we refer to elements of D and V' as points and figures, respectively. The intersection graph of the
family is an undirected graph G = (V, E) with

E:{uve(g):uﬂv;ﬁ(b}.

A set W C V is considered as stable or independent in G if and only if its figures are pairwise
disjoint. Let (V,Z) be the independence system of stable sets of G.

When D is finite, computing a stable set is equivalent to choosing, for each point p € D, at
most one figure that contains p. Thus (V,Z) is the intersection of |D| partition matroids, one per
point. If every figure contains at most k points, then each figure participates in at most k of those
matroids and the system is a k-matchoid. Moreover, the circuits all have size 2: if a set is not stable,
it contains two figures meeting at some point, and any proper subset is stable.

We focus on a special family of figures defined by intervals on a line. Let D = [N], and for
integers 1 <a < b < N, let V,; denote the collection of all intervals whose sizes lie between a and b,
where the size of an interval is the number of its points. That is,

Vap ={li,j]: 1<i<j<N,a<j—i+1<b}.

By the above, (V,4,Z) is a b-matchoid. We show it is also c-circuit-bounded and a c-growth system
with ¢ = 22| + 2.

Circuit boundedness. Let R = {v1,...,v,} C Vg be stable and take any interval ' = [¢,7] € V
such that RU {v'} ¢ Z. Let
ZW)={veR:vnv #0}

be the intervals in R intersecting v’. The number of circuits created by adding v’ is exactly |Z(v')];
our goal is to bound |Z(v)].

Let Zy(v') € Z(v') be those intervals that do not contain either endpoint £ or r of v'. Then
every v € Zp(v') is a subinterval of the interior of v/, so the total number of points they cover is at
most |v'| —2 < b — 2. Since each interval has length at least a, we get

alZo(@)] < P'|-2 < b-2,

yielding | Zp(v')| < V)?TQJ Since at most two additional intervals in Z(v') can contain the endpoints
¢ and r, we obtain
Z(W)| < |Zo()|+2 < [P +2 = ¢

a

proving c-circuit-boundedness.

Being c-growth. Let X C V,;, be arbitrary, I € Z be stable, and set R := I\ X. For each v/ € X \ I,
define Z(v') C R as above; by the previous bound, we have |Z(v')| < ¢. Let

Z= |J 2), Q=R\Z
v'eX\I

Every interval in @ is disjoint from every interval in X \ I by construction, and also from every
interval in X NI by the independence of I. Therefore, for any stable set P C X, we have PUQ € 7.
Moreover,

Zl < ) 1Z0)] < elX\I| < elX],
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showing the c-growth property (¢BG).

Not a c-matchoid. Finally, let us show that for certain values of a and b, the system above is not a
c-matchoid. We give an example below with N =8, a=b=3 and ¢ = [(b—2)/a] +2 = 2.
Denote vj = {j,j + 1,7 + 2} for j € [6] the six intervals of size 3. Suppose that the system of
stable sets (S,Z) is a 2-matchoid given by a family of matroids. Since every singleton is independent
and every circuit of (9, Z) has size 2, we conclude that each circuit {x, y} of (S,Z) is a matroid-circuit
in at least one of the matroids.
The four pairs

{vs,v1}, {vs,v2}, {vs,va}, {vs,vs}

Using the same reasoning for the circuits

{va,v2}, {va,v3}, {va,v5}, {va,v6},

we get that vy is contained in two distinct matroids M and Mp such that {vg, vo} and {vy4,v3} are
circuits of M¢, while {vy4,v5} and {vy4, v} are circuits of Mp.

Furthermore, by circuit elimination, {v1,v2} is also a circuit in My, and {vg,v5} is a circuit in
Mp. Observe that v3 belongs to the ground sets of M4, Mp, and Mg, and since My # Mp, it
follows that Mc € {Ma, Mp}. If Mo = M4, then M4 contains the circuits {v1, va} and {ve,v4}. By
circuit elimination, {vi,v4} would also be a circuit, contradicting that {vi,v4} € Z is independent.
Similarly, if Mo = Mp, then Mp contains the circuits {v4, v5} and {v2,v4}, and circuit elimination
would imply that {vy,vs} is a circuit, again contradicting independence. Hence My, Mp, and Mg
must be pairwise distinct matroids containing vs, which contradicts the assumption that (S,Z) is a
2-matchoid.

7.4 Parallel Extension, Restriction, and Contraction in Independence Systems

In matroid theory, the most important classes are those closed under basic operations, such as
restriction, contraction, and parallel extension. Determining whether analogous closure properties
hold for more general independence systems is also of particular interest. In this section, we
investigate this problem and related questions. We first define the counterpart of these two
operations for independence systems.

Definition 17 (Parallel extension). Let F = (S,Z) be an independence system and s € S be a
non-loop element. Set S5 = (S — s) U {s1,s2}, and define the projection of a set X C So4 as
7ms(X) = X if XN {s1,s2} =0 and 75(X) = (X \ {s1, s2}) + s otherwise. Then, the parallel extension
of F along e is the system Fos = (Soe, Zos) with

Tos = {X C Sos: ms(X) € Z}.

Definition 18 (Restriction). Let F = (S,Z) be an independence system and Y C S. We define the
restriction of F to Y as the system F = (S|y,Z|y) with

Iy ={XCY: X €T}.

The two operations above agree with the corresponding ones on matroids.
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Definition 19 (Contraction). Let F = (5,Z) be an independence system and I € Z be an
independent set. We define the contraction of I in F as the system F/I = (S\ I,Z/I) with

T/I={XCS\I:SUIl€cT}.

The contraction of an independent set coincides with the notion of contraction in matroids
when we contract an independent set, but it is undefined when we try to contract a set that is not
independent.

The next result shows that most of the classes behave well with respect to these operations.

Lemma 9. If F = (S,Z) is k-matroid intersection/k-matchoid/k-circuit bounded/k-growth/k-
extendible, then so are its parallel extensions, restrictions and contractions.

Proof. The claim for restrictions is direct. For parallel extensions and contractions, we prove the
statement for the classes one by one. We first consider parallel extensions. Let s € S be an arbitrary
element.

k-matchoids. If F is defined by matroids (.S;,Z;) for i € [N], then its parallel extension Fog is the
k-matchoid defined by the matroids obtained by performing the same parallel extension on each of
them.

k-circuit-bounded. Take an independent set I € Zos and let e € Sos \ I. If I N {s1,80} = 0 or
e ¢ {s1, s2}, then there is a one to one correspondence between the circuits of Fos in I + e and of
Finws(I +e). i IN{s1,s2} # 0 and e € {51, s2}, then I 4 e contains the unique circuit {si, s2}.
Since F is k-circuit bounded, I + e contains at most k such circuits in both cases.

k-growth. Take an arbitrary set X C S, and an independent set I € Zos. If [(ITU X) N {s1,82} <1
or {s1,s2} C X, then the k-growth axiom (kBG) simply follows from that for the projections in the
original system. Otherwise, since I € Z,,, we have [(X \ I) N {s1,s2}| = |\ X) N {s1,s2}| = 1; we
may assume without loss of generality that s; € S\ I and so € I\ X. Then (kBG) for 74(X) and
7s(Z) in the original system yields a set Z C 75(I) \ ms(X) such that P U (7s(I) \ Z) € T for every
basis P of m4(S), and |Z| < k|(7s(S) \ ms(I)| = k| X \ I| — k. Here, the last inequality follows from
s € mg(X) N7s(Z). Then, choosing Z' := Z + s satisfies P’ U (I \ Z') € Lo for every basis P’ of X
and |Z'| =|Z|+1<kIX\Z|-k+1<EklX\Z.

k-extendible. Take any triple (A, B,e) with A C B, B € Zo5, ¢ € Sos \ B, and A+ e € Zos. If
BN {s1,s2} = 0 or e ¢ {s1,s2}, then the k-extension property of F implies that there exists
Z C mg(B) \ ms(A) with |Z| < k such that (74(B) + 7ms5(e))\ Z € Z. Let Z/ .= Z if s ¢ Z and
7" = (Z — s)U(BN{s1,s2}) otherwise. Then Z’ satisfies (B +¢) \ Z' € Z,s and |Z'| < k. If
BnN{s1,s2} # 0 and e € {s1, s2}, then B+e contains the unique circuit {s1, s2}, thus Z = {s1,s2}—e
is a proper choice.

Now we consider contractions. Let I be an independent set in Z and J C S\ I an independent
set of F/I, that is, U J € Z.

k-matchoids. If F is defined by matroids (S;,Z;) for ¢ € [N], then the contraction F/I is the
k-matchoid defined by the matroids (S; \ I,Z;/(I NS;)) for i € [N].

k-circuit-bounded. Let e € (S \ I)\ J) and C be a circuit of F/I contained in J + e. Then
TU(J+e)¢Z,but IU(J+e— f)€Zforeverye, f e C. These together imply that C = C"\ I

53



for some circuit C" C (I U J) + e of F. Since (I UJ) + e contains at most k circuits of F, we have
that J + e contains at most k circuits of F/I.

k-growth. Take an arbitrary set X C S\ I and consider the sets Y := X UT and F := JUI. Note
that F' € Z by definition and, since M is a k-growth system, we have that there exists Z C F'\'Y
such that |Z| < k|Y \ F| and for any basis P of Y, we have PU (F' \ (Y U Z)) € Z. However, we
have that I CYNF,and thus Y\ F=X\J, F\Y=J\ X,and F\ (YUZ)=J\(XUZ). Let
@ be a basis of X, which implies that ) is an independent set of Y. Since QU (F'\ (Y U Z)) € Z,
we get that QU (J\ (X U Z)) € J, and thus F/I is a k-growth system.

k-extendible. We show the k-extension property for a triple (A, B,e) with A C B, B € I/I,
e€ (S\I)\ B,and A+ e € Z/I. By the definition of contraction, we have TUA C ITUB € Z, and
IU(A+-e) € Z. Since the original system is k-extendible, then there exists Z C (BUI)\(AUI) = B\ A
with |Z| < k such that (/U (B +¢))\ Z € Z. Therefore (B+e¢)\ Z € Z/I. O

Interestingly, the case for k-systems is different.

Lemma 10. FEvery parallel extension and restriction of a k-system is a k-system. Howewver, for
k > 2, the contraction of a k-system is not necessarily a k-system.

Proof. Closure under parallel extension follows immediately, since duplicating an element into
parallel copies does not affect the relative sizes of maximal independent sets in any subset, while
closure under restriction is trivial by definition. For closure under contraction, consider the system
with S = {z,a,b,c,d} and bases {a,b, c,d}, {z,a}, {x,b}, {z,c}, and {z,d}. Since every set of size
two is independent, for every X C S with |X| < 4 and for every pair P, Q of bases of X, we have
|P| > |X|/2 > |Q|/2. If X = S, then all bases of X have size either 2 or 4, so the system is a
2-system. However, after contracting a, both P = {b,c,d} and Q = {z} are bases, with |P|/|Q| = 3,
and the resulting independence system is not a 2-system. O

The following theorem reveals a key structural link between k-systems and k-extendible systems:
every k-extendible system arises as a contraction of a k-system.

Theorem 13. An independence system F = (S, ) is k-extendible precisely when all of its contrac-
tions are k-systems.

Proof. If F is k-extendible, then by Lemma 9, all its contractions are k-extendible, and therefore
also k-systems.

Now suppose that F is a k-system whose contractions are k-systems. We show that it is k-
extendible. Let AC BeZande € S\ B with A+e €Z. Since A+e C B+e, choose Z C B\ A of
minimum size such that (B+e¢e)\Z € Z. If B+e € Z, then Z = () works and we are done; otherwise
assume B+e ¢ Z. Then {e} € Z/(B\ Z) and Z € Z/(B\ Z). We claim that both {e} and Z are
bases of Z + e in the contracted system F/(B\ Z). Indeed, if Z were not a basis, then Z + e would
be independent in Z/(B \ Z), implying (Z +e) U (B\ Z) = B + e € Z, a contradiction. Similarly, if
there existed f € Z such that {e, f} € Z/(B\ Z), then (B\ Z)U{e,f} = (B+¢e)\ (Z - f) € T,
contradicting the minimality of Z as Z — f would have smaller size. Therefore, both {e} and Z are
bases of Z+einZ/(B\ Z). AsZ/(B\ Z) is a k-system, we must have |Z| < k|{e}| = k, and hence
(S,7) is k-extendible. O
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